首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1) fourteen of the twenty tree species were negatively (or positively) associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2) Most saplings of the study species showed a significantly clumped distribution at small scales (0–10 m) which was lost at larger scales (10–30 m). (3) The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4) It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely) contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.  相似文献   

2.
The spatial pattern of a tree species is an important characteristic of plant communities, providing critical information to explain species coexistence. The spatial distribution and association of four different successional species were analyzed among different life-history stages in an old-temperate forest. Significant aggregation patterns were found, and the degree of aggregation decreased with the scales and life-history stages. Significant interspecific spatial associations were detected. In comparing the relationships among the different life-history stages, positive associations were found at small scales in all of the juvenile species pairs. In the adult stage, negative associations were detected in coniferous vs. deciduous species pairs, while the deciduous species pairs, which have identical resource requirements, showed a positive association in this study. The coniferous species pairs showed a positive association at small scales. We infer that seed dispersal, competitive ability, or the requirement for specific topographic and light environments may contribute to the coexistence of these species.  相似文献   

3.
Abstract. Fine‐scale spatial patterns of small mammal disturbances and local accumulation of plant litter were studied together with the spatial pattern of vegetation in different stages of old‐field succession at Cedar Creek Natural History Area, Minnesota, USA. Seven stands from one to 66 years old were sampled. Presence of living plant species, local soil disturbances by pocket gophers (Geomys bursarius) and plant litter accumulation were recorded in 10 cm × 10 cm contiguous microquadrats along elliptical transects. Spatial patterns and associations were analyzed using information theory models. Dominant grasses were spatially independent, while subordinate functional groups were strongly dependent on the existing patchwork of dominant species, plant litter and gopher disturbances. Litter had consistent negative associations with subordinate functional groups in all but the initial years. Gopher disturbances were abundant but had weak and variable associations with vegetation. These results suggest that gopher disturbance does not facilitate the colonization of native prairie species and that diversity can be improved by controlling litter accumulation in Minnesota old‐fields.  相似文献   

4.
海南岛霸王岭热带低地雨林树木的空间格局   总被引:2,自引:1,他引:1       下载免费PDF全文
树木空间格局及其形成过程是物种共存及生物多样性维持机制研究的一个重要方面。该文以海南岛两个1 hm 2的典型热带低地雨林老龄林森林动态样地为基础, 通过4个点格局模型(均质Poisson过程、异质Poisson过程、均质Thomas过程和异质Thomas过程)模拟扩散限制和生境异质性作用对树木空间分布格局的影响, 并分析不同空间尺度下(< 2 m, 2-5 m, 5-10 m, 10-15 m, 15-20 m和20-25 m)不同作用的相对重要性。结果表明: 热带低地雨林的所有树木总体上呈现聚集分布的空间格局, 随着尺度的增大, 聚集强度逐渐减小。树种在模拟空间分布格局最优模型中的比例由高到低分别是: 均质Thomas过程, 均质Poisson过程、异质Thomas过程和异质Poisson过程。扩散限制作用是形成热带低地雨林树木空间分布格局最重要的生态过程, 其次是完全随机作用以及生境异质性和扩散限制的联合作用, 而生境异质性的作用最小。不同空间尺度上模拟各树种空间分布格局的最优模型比例差异显著, 扩散限制作用能够在多数空间尺度上模拟多个树种的空间分布格局, 其次为随机作用; 生境异质性和扩散限制的联合作用主要在小尺度(0-5 m)影响树种分布, 而生境异质性在较大尺度(15-25 m)上影响树种的空间分布格局。  相似文献   

5.
Plant habitat associations are well documented in Bornean lowland tropical forests, but few studies contrast the prevalence of associations across sites. We examined habitat associations and community composition of Dipterocarpaceae trees in two contrasting Bornean lowland mixed dipterocarp forests separated by approximately 100 km: Andulau (uniform topography, lower altitudinal range, sandy soils) and Belalong (highly dissected topography, higher altitudinal range, clay‐rich soils). Dipterocarpaceae trees ≥ 1 cm diameter at breast height (dbh) were censused in 20‐m wide belt transects established along topographic gradients at each site. Dipterocarp density, evenness, species richness, and diversity were significantly higher at Andulau than Belalong. Significant site associations (with either Andulau or Belalong) were detected for 19 (52%) of the 37 dipterocarp species tested. Dipterocarpaceae community composition at Belalong correlated with soil nutrient concentrations as well as measures of vegetation and topographic structure, but community composition at Andulau correlated with fewer habitat variables. Within each site, dipterocarp density, species richness, and diversity were consistently higher on ridges than in slopes and valleys. Significant within‐site associations to topographic habitats were less common at Andulau (10% of species tested) than at Belalong (15%). We conclude that edaphic and other environmental factors influence dipterocarp community composition at a local scale, and are more important drivers of community structure in the more variable environment at Belalong. Species richness and diversity of dipterocarps on small plots, however, were higher at Andulau, suggesting that factors other than environmental heterogeneity contribute to contrasts in dipterocarp tree species richness at small scales.  相似文献   

6.
In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco-morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales.  相似文献   

7.
Significant spatial variation in species composition of microphytobenthos often occurs at scales of decimetres. This microscale variation is typically more connected with dispersal-related events than to environmental factors. In this study, 4 microscale transects were delimited at 4 temperate lowland peat bog localities to investigate spatial and temporal microscale variations in benthic desmids (Desmidiales, Viridiplantae). Significant spatial autocorrelation was detected in most of the transects taken 3 times, in September and December 2010 and March 2011. The relative abundance of species data produced more pronounced spatial patterns than the presence?Cabsence data. Spatial autocorrelation mostly decreased during the winter period, possibly due to meteorological disturbances, resulting in less spatially structured phytobenthic community in the March transects. In most cases, spatial distance accounted for a significant part of the variation in a community structure, even in analyses that controlled for the effects of environmental and temporal factors. This indicated that pure spatial factors should be considered important for structuring phytobenthic communities, even across a temporal time span of 6?months. The reduced data sets that included only 25?% of the most frequented species produced very similar patterns in spatial and temporal autocorrelation as the full data sets. Consequently, we concluded that microscale variation of benthic desmids may be sufficiently represented by dynamics of the common species.  相似文献   

8.
  • 1 The larval chironomid community of the sediment surface and the hyporheic inters titial was investigated in two longitudinal transects of an alpine gravel stream between September 1984 and August 1985. Eighty larval species and species groups were identified, most of which belonged to the subfamily Orthocladiinae. Of all larval individuals 51.1% inhabited the first 10cm of the bed sediments, and 93.2% occurred between the surface and 40cm depth.
  • 2 The spatial species turnover showed marked variations between horizontally adjacent sampling sites in each of the four sediment depth layers. In both transects the species composition showed a significantly lower turnover in the upper 10cm of the bed sediments than in the deeper layers.
  • 3 Spatial community stability showed an oscillating pattern between all sampling sites due to density shifts of larvae between depth layers. Temporal differences in resilience (local stability) were significantly and positively related to changes in the cumulative discharge pattern in the gravel brook, thus indicating the apparent ability of the community to recover quickly following disturbances.
  • 4 The five abundant species, Corynoneura lobata, Synorthocladius semivirens, Tvetenia calvescens, Micropsectra atrofasciata and Rheotanytarsus nigricauda, exhibited significant differences in their sediment depth distribution, with density maxima shifting between depth layers. Spatial autocorrelations suggest that these larvae form patches between neighbouring sampling sites with varying sizes and inter-patch distances in each of four sediment layers. A simulation test, in which individuals of each species were randomly permuted between microhabitats of each depth layer separately, indicated that the patches might have arisen by chance.
  • 5 To evaluate the significance of observed spatial resource overlap values amongst these five chironomid species, neutral models were developed based on 300 randomizations of each possible species pair-wise association of individuals and patches of species. The spatial organization of a larval chironomid assemblage in the stream Oberer Seebach seemed to be governed by coexistence due to random patch formation and dispersal patterns within the interstitial habitats, which reduce the probability of strong competitive interactions.
  相似文献   

9.
10.
Does functional redundancy exist?   总被引:9,自引:0,他引:9  
Michel Loreau 《Oikos》2004,104(3):606-611
Functional redundancy has often been assumed as an intuitive null hypothesis in biodiversity experiments, but theory based on the classical Lotka-Volterra competition model shows that functional redundancy sensu stricto is incompatible with stable coexistence. Stable coexistence requires differences between species which lead to functional complementarity and differences between the yields of mixtures and monocultures. Only a weaker version of functional redundancy, i.e. that mixture yields lie within the range of variation of monoculture yields, is compatible with stable coexistence in Lotka-Volterra systems. Spatial and temporal environmental variability may provide room for functional redundancy at small spatial and temporal scales, but is not expected to do so at the larger scales at which environmental variations help maintain coexistence. Neutral coexistence of equivalent competitors, non-linear per capita growth rates, and lack of correlation between functional impact and biomass may provide the basis for the existence of functional redundancy in natural ecosystems. Overall, there is a striking parallel between the conditions that allow stable coexistence and those that allow overyielding.  相似文献   

11.
Inouye BD 《Oecologia》2005,145(2):188-196
Species that live in patchy and ephemeral habitats can compete strongly for resources within patches at a small scale. The ramifications of these interactions for population dynamics and coexistence at regional scales will depend on the intraspecific and interspecific distributions of individuals among patches. Spatial heterogeneity due to independent aggregation of competitors among patchy habitats is an important mechanism maintaining species diversity. I describe regional patterns of aggregation for four species of insect larvae in the fruits of Apeiba membranacea, a Neotropical rainforest tree. This aggregation results from variation in densities at a small scale (among the fruits under a single tree), compounded by significant variation among trees in both mean densities and degrees of aggregation. Both the degrees of aggregation and mean densities are statistically independent within and across species at both spatial scales. I evaluate the regional consequences of these spatial patterns by using maximum likelihood methods to parameterize a model that includes both explicit measures of the strength of competition and spatial variation at both within- and among-tree spatial scales. Despite strong competitive interactions among these species, during 2 years the observed spatial variation at both scales combined was sufficient to explain the coexistence of these species, although other coexistence mechanisms may also operate simultaneously. The observed spatial variation at small spatial scales may not be sufficient for coexistence, indicating the importance of considering multiple sources of spatial heterogeneity when scaling up from experiments that investigate local interactions to regional patterns of coexistence.  相似文献   

12.
Jordano  Pedro 《Plant Ecology》1993,(1):85-104
Spatial and temporal predictability in the mutual selective pressures of plants and frugivorous birds is a prerequisite for coevolution to occur. I examine the interaction patterns of strongly frugivorous thrushes (Turdus spp.) and their major winter food plants (Juniperus spp., Cupressaceae) and how they vary in space and time. Spatial congruency, rarely considered in seed dispersal studies, is studied at three spatial scales: 1) the total species range; 2) regional distribution; and 3) local abundance and its variation between seasons. Southern Spanish frugivorous thrushes and junipers show very low congruence in distribution patterns at each of these scales. Most juniper species show geographic distributions that are nested within the geographic ranges of thrush species. Bird species showed greater habitat breadth values than plants and were found in a greater percentage of localities. The local bird abundance was strongly correlated across years and sites with the local availability of juniper cones. Cone production varied markedly between years, but the rankings for different species in different years were statistically concordant at mid-elevation and lowland sites. Both bird abundance and cone production showed greater temporal than spatial variability. Variation of cone productions at both temporal and spatial scales was greater than variability in bird abundance. Species with strong interactions of mutual dependence showed very low values of biogeographic congruence, caused by differences in geographic range and habitat specificity. This obviously limits the possibilities for pairwise, specific coevolution to occur. However, mutual effects of species groups are possible to the extent that the component species are ecologically interchangeable in their selective effects and other constraints on coevolution are not operating. The approach used here to examine the patterns of species interactions at different biogeographic scales might prove useful in comparative studies of plant-animal interactions.  相似文献   

13.
Mechanisms explaining patterns of biodiversity along elevation gradients in tropical mountain systems remain controversial. We use a set of climatic, topographic, and soil variables encompassing regional, landscape, and local‐level spatial scales to explain the spatial variation of tree species diversity in the Sierra Madre of Chiapas, Mexico. We sampled 128 circular plots (0.1‐ha each) in four elevational bands along four elevation gradients or transects encompassing 100–2200 m. A total of 12,533 trees belonging to 444 species were recorded. Diversity patterns along the elevation gradient and the explanatory power of independent variables were dependent on spatial scale (regional vs transect) and functional group (total vs late‐successional or pioneer species). Diversity of all species and late‐successional species (1 – proportion of pioneer species) showed a constant pattern at the regional and transect scales, with low predictive power of climatic variables and/or elevation. A linear decrease in either number or proportion of pioneer species diversity was observed with increasing elevation, which was correlated with temperature, rainfall, and human disturbance trends. Total species diversity showed an increase with rainfall of the warmest quarter, indicating a regional‐level limiting effect of seasonality (drought duration). Yet the explanatory power of climatic and topographic variables was higher at the individual transect level than at the regional scale, suggesting the parallel but differential influence of evolutionary and geological history factors on diversification not so far studied to explain elevation patterns of species diversity in tropical mountain systems.  相似文献   

14.
It is well known that stream macroinvertebrates usually show aggregated spatial distributions caused by extrinsic factors and interactions among species and individuals. In the present study, the spatial distribution of caddisfly assemblages and coexistence patterns of larval caddisfly species (Insecta: Trichoptera) were measured in a Hungarian stream reach at three different spatial scales. Caddisfly assemblages showed aggregated, random and regular distributions as measured by the variance‐mean relationship of species richness as sampling area increased from 0.0225 m2 to 0.2025 m2. The observed coexistence patterns indicated interactions (lower diversity of unique species combinations than expected by chance) among species for aggregated distributions. These interactions among species proved to be positive associations particularly among species belonging to the same functional feeding group. The positive associations and the aggregated distribution of caddisflies supported the hypothesis that microhabitat patches (patchy microhabitat‐macroinvertebrate model) and/or positive biological interactions among species using the same resource (hypothesis of facilitation) have a deterministic effect on the spatial distribution of caddisfly assemblages. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
土壤动物群落空间异质性及其与环境因子的空间作用关系, 是揭示土壤生态系统格局与过程及生物多样性维持机制的重要基础。作者于2015年生长季节(8月)、寒冷季节(10月)在丰林典型阔叶红松林动态监测样地内, 采用陷阱法调查地表鞘翅目成虫群落, 基于地统计空间分析方法, 揭示步甲科和隐翅虫科群落个体数和物种数及优势种的空间格局, 并分析这些空间格局与土壤含水量和地形因子的空间关联性。两次采样共捕获步甲科成虫26种617只, 隐翅虫科19种222只。8月群落个体数和物种数表现为中等变异, 10月为强变异, 群落组成在两个月间具有显著差异。生长季节(8月)和寒冷季节(10月)步甲科和隐翅虫科群落多表现为中等的空间自相关性, 空间分异由随机性因素和结构性因素共同决定。单个物种的个体数多具有中等的空间异质性特征, 且其空间分异主要由随机性因素和结构性因素共同调控。生长季节群落的个体数、物种数和优势种个体数多形成斑块和孔隙镶嵌分布的空间格局。物种之间及物种与环境因子之间多为复杂的空间关联性, 这些关联性主要受到结构性因素或随机性因素的单一调控。典范对应分析(canonical correspondence analysis, CCA)结果表明, 8月土壤含水量对步甲科和隐翅虫科物种分布影响显著, 10月凹凸度对步甲科分布影响显著, 海拔对隐翅虫科分布具有显著影响。本研究表明地表步甲科和隐翅虫科在生长季节形成明显的空间格局而在寒冷季节空间格局不明显, 为不同尺度地表土壤动物空间异质性和生物多样性维持机制研究提供了理论基础。  相似文献   

16.
Aims For assisting faster restoration of damaged or severely disturbed coastal ecosystems, selected mangrove species have been planted on previously mangrove-inhabited sites of the tropical and subtropical coasts of southern China. The objective of this study was to understand the stand dynamics of the planted mangroves and their functional traits in comparison with natural mangrove forests under similar site conditions.Methods Species composition, stand density, tree size distribution, and aboveground production were investigated along three transects in a 50-year-old planted mangrove stand and three transects in an adjacent natural mangrove stand in Shenzhen Bay, South China. Measurements were made on tree distribution by species, stand structure, and aboveground biomass (AGB) distribution. Analyses were performed on the spatial patterns of tree size distribution and species association.Important findings We found that the planted and natural mangrove stands did not differ in stand density, average diameter at breast height (DBH), species composition, and AGB. Spatial distribution of AGB and frequency at species level were also similar between the planted and natural stands. However, the traits in stand structure were more variable in the planted stand than in the natural stand, indicating higher spatiotemporal heterogeneity in the development and succession of planted mangroves. Geostatistical analyses show that both DBH and AGB were spatially auto-correlated within a specific range in the direction perpendicular to coastline. More than 60% of the variance in these attributes was due to spatial autocorrelation. The Ripley's K -function analysis shows that the two dominant species, Kandelia obovata and Avicennia marina, clumped in broader scales in the natural stand than in the planted stand and displayed significant interspecific competition across the whole transect. It is suggested that interspecific competition interacts with spatial autocorrelation as the underlying mechanism shaping the mangrove structure. This study demonstrates that at age 50, mangrove plantations can perform similarly in stand structure, spatial arrangement of selected stand characteristics and species associations to the natural mangrove forests.  相似文献   

17.
Abstract.  1. Primary and logged lowland dipterocarp forest sites were sampled for subterranean termites using soil pits located on a grid system in order to detect any patchiness in their distribution.
2. A spatial pattern in termite distributions was observed in the primary and logged sites, but the response differed between soil-feeding and non-soil-feeding termites.
3. Spatial analysis showed that soil-feeding termites were homogeneously distributed in the primary forest but significantly aggregated in the logged forest. This pattern was reversed for non-soil-feeding termites and may result from differences in resource provisioning between the two sites.
4. Gaps in termite distribution comprised a greater area than patches for both feeding groups and sites, but gaps dominated the logged site.
5. A significant association between soil-feeding and non-soil-feeding termite distributions occurred at both sites. This arose from an association between patches in the primary forest and between gaps in the logged forest.
6. Termite spatial pattern was optimally observed at a minimum extent of 64 m and lag of 2 m.
7. The spatially explicit SADIE (Spatial Analysis by Distances IndicEs) analyses were more successful than (non-spatially explicit) multivariate analysis (Canonical Correspondence Analysis) at detecting associations between termite spatial distributions and that of other biotic and abiotic variables.  相似文献   

18.
European farmland biodiversity is declining due to land use changes towards agricultural intensification or abandonment. Some Eastern European farming systems have sustained traditional forms of use, resulting in high levels of biodiversity. However, global markets and international policies now imply rapid and major changes to these systems. To effectively protect farmland biodiversity, understanding landscape features which underpin species diversity is crucial. Focusing on butterflies, we addressed this question for a cultural-historic landscape in Southern Transylvania, Romania. Following a natural experiment, we randomly selected 120 survey sites in farmland, 60 each in grassland and arable land. We surveyed butterfly species richness and abundance by walking transects with four repeats in summer 2012. We analysed species composition using Detrended Correspondence Analysis. We modelled species richness, richness of functional groups, and abundance of selected species in response to topography, woody vegetation cover and heterogeneity at three spatial scales, using generalised linear mixed effects models. Species composition widely overlapped in grassland and arable land. Composition changed along gradients of heterogeneity at local and context scales, and of woody vegetation cover at context and landscape scales. The effect of local heterogeneity on species richness was positive in arable land, but negative in grassland. Plant species richness, and structural and topographic conditions at multiple scales explained species richness, richness of functional groups and species abundances. Our study revealed high conservation value of both grassland and arable land in low-intensity Eastern European farmland. Besides grassland, also heterogeneous arable land provides important habitat for butterflies. While butterfly diversity in arable land benefits from heterogeneity by small-scale structures, grasslands should be protected from fragmentation to provide sufficiently large areas for butterflies. These findings have important implications for EU agricultural and conservation policy. Most importantly, conservation management needs to consider entire landscapes, and implement appropriate measures at multiple spatial scales.  相似文献   

19.
空间尺度是影响我们理解生态学格局和过程的关键因素。目前已有多种关于物种多样性分布格局形成机制的假说且研究者未达成共识,原因之一是空间尺度对物种多样性分布格局的环境影响因子的解释力和相对重要性有重要影响。地形异质性是物种多样性分布格局的重要影响因素。本文综述了在地形异质性-物种多样性关系的研究中,不同空间粒度和幅度对研究结果的影响,以及可能的原因。尽管已认识到地形异质性-物种多样性关系的空间尺度效应,但粒度和幅度的具体影响仍未有统一结论。当前物种多样性分布格局研究未能覆盖较完整的尺度变化梯度。未来对地形异质性-物种多样性关系的研究需要同时考虑幅度和粒度的影响。建议结合可靠的模型和统计分析方法开展多尺度格局比较分析,以进一步阐明研究尺度对地形异质性-物种多样性关系的影响以及地形异质性起主导作用的空间尺度。  相似文献   

20.
Abstract. Local variation in individual density, species composition, species richness and species diversity of terrestrial pteridophytes were studied at four sites in the tropical lowland rain forest of western Amazonia. 15 568 pteridophyte individuals representing 40 species were recorded in four plots. The variability among subplots within the same plot was considerable in all the characteristics measured (number of individuals, number of species, species diversity); the square 1‐ha plot was more homogeneous in these respects than any of the three 5 m by 1300 m transects. Species richness was affected by the density of individuals both within and among plots. Density of individuals was not affected by topographical position within any of the plots, whereas in some of the plots both species richness and species diversity were. Clustering and ordination analyses showed that floristically similar subplots could be found in different plots: although there was a tendency for subplots from the same plot to be floristically similar and therefore to group together, many recognized groups included subplots from two or more plots. Both within and among plots, the floristic differences corresponded to topographic position and were probably related to soil drainage. This was also evident in that the abundance patterns of many species followed the topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号