首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Macroalgae have received much attention for heavy metal removal in treatment of domestic wastewater. In this report, the uptake capacity of a common freshwater green alga, Cladophora fracta, for heavy metal ions (copper, zinc, cadmium, and mercury) was evaluated. The equilibrium adsorption capacities were 2.388?mg Cu2+, 1.623?mg Zn2+, 0.240?mg Cd2+, and 0.228?mg Hg2+ per gram of living algae at 18°C and pH?5.0. The removal efficiency for Cu2+, Zn2+, Cd2+, and Hg2+ were 99, 85, 97, and 98%, respectively. Greater removal efficiency was achieved when the concentrations of metal ions were at very low level. The results indicated that living algae are suitable for removal and recovery of heavy metal ions from aqueous solutions and can be a potential tool to treat industrial wastewater.  相似文献   

2.
Inhibition of electron transport activities in the spheroplasts ofSynechococcus 6301 by HgCl2 is dependent on the concentration of mercury ions. The inhibition of whole chain electron transport activity occurs at low concentration of Hg2+ (6 ΜM@#@). This inhibition occurs mostly due to interaction of Hg2+ on plastocyanin. At an elevated concentration (24 ΜM@#@), mercury induces inhibition chiefly in photosystem II catalyzed electron transport. At this concentration it also alters both the absorption and emission characteristics of the phycocyanin. The photosystem I catalyzed electron transport was inhibited by 50% only at high concentrations (36 ΜM@#@) of HgCl2. However, electron transport catalyzed by photosystems I and II from reduced duroquinone to methylviologen which involves intersystem electron transport is extremely sensitive to mercury (low concentration 6–9 ΜM) like that of whole chain assay indicating that the observed inhibition in whole chain electron transport at low concentrations is mostly contributed by the damage involving other intersystem electron transport carrier(s) like plastocyanin. Thus mercury ions depending on the concentration affects the electron transport at multiple sites in the spheroplasts ofSynechococcus.  相似文献   

3.
The reaction of triethanolamine (TEA) with active substrates—p-nitrophenyl esters and cinnamoyl imidazole (CI)—is catalyzed by divalent heavy metal ions. With Hg2+, rate enhancements of 100–1000 (depending on the substrate) were observed, the overall rate constants of substrate decomposition thus exceeding those of spontaneous hydrolysis up to 100,000-fold. The predominant active species at low L:M ratio was found to be the Hg-(TEA)2 complex. The dependence of the reaction rate upon excess of amino alcohol—at constant Hg2+ concentration—is attributable to formation of another active complex—Hg-(TEA)3.The high reactivity of the system is due to the alcoholate group of metal-bound TEA, whose pK has been lowered by the proximity of the metal ion. This labile nucleophilic alcoholate attacks the substrate causing its alcoholysis and forming O-acyl-TEA. The lability of the metal-alcoholate bond can be enhanced by low concentrations of halide ions, thus causing up to 5-fold additional increase in alcoholysis rate. Higher halide ion concentrations cause inhibition, probably due to formation of inactive HgX2 molecules.Presumably an important role of the metal ion in metalloenzymes is to affect the decrease in the pK value of a reactive group so that it can exhibit activity under physiological conditions.  相似文献   

4.
Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg2+), lead (Pb2+) and cadmium (Cd2+) in aqueous solutions as a single metal species at conc. 5–100 mg / L under controled laboratory conditions. The obtained results showed that Hg2+ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb2+ and Cd2+ (5–20 mg / L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40–100 mg / L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg / L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg / L. The bioremoval of heavy metal ions (Hg2+, Pb2+ and Cd2+) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg2+), 86% (Cd2+) and 70% (Pb2+). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions.  相似文献   

5.
The rate of photosynthetic electron transport measured in the absence of ADP and Pi is stimulated by low levels of Hg2+ or Ag+ (50% stimulation ≈ 3 Hg2+ or 6 Ag+/100 chlorophyll) to a plateau equal to the transport rate under normal phosphorylating conditions (i.e. +ADP, +Pi). Chloroplasts pretreated in the light under energizing conditions with N-ethylmaleimide show a similar stimulation of non-phosphorylating electron transport. The stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and N-ethylmaleimide are reversed by the CF1 inhibitor phlorizin, the CF0 inhibitor triphenyltin chloride, and can be further stimulated by uncouplers such as methylamine. The Hg2+ and N-ethylmaleimide stimulations, but not the Ag+ stimulation, are completely reversed by low levels of ADP (2 μM), ATP (2 μM), and Pi (400 μM). Ag+, which is a potent inhibitor of ATP synthesis, has little or no effect upon phosphorylating electron transport (+ADP, +Pi). Concomitant with the stimulations of non-phosphorylating electron transport by Hg2+, Ag+ and ADP + Pi, there is a decrease in the level of membrane energization (as measured by atebrin fluorescence quenching) which is reversed when the CF0 channel is blocked by triphenyltin. These results suggest that modification of critical CF1 sulfhydryl residues by Hg2+, Ag+ or N-ethylmaleimide leads to the loss of intra-enzyme coupling between the transmembrane protontransferring and the ATP synthesis activities of the CF0-CF1 ATP synthase complex.  相似文献   

6.
Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported.  相似文献   

7.
The glutathione (GSH) status and heavy metal tolerance were investigated in four Paxillus involutus strains isolated from different heavy-metal-polluted and non-polluted regions of Europe. The heavy metal burden in the habitats did not affect significantly either the heavy metal (Cr2O72−, Cd2+, Hg2+, Pb2+, Zn2+, Cu2+) tolerance and accumulation or the GSH production of the strains tested. Exposures to heavy metals increased the intracellular GSH concentrations in 12 from 24 experimental arrangements (four strains exposed to six heavy metals) independently of the habitats of the strains. The importance of GSH in heavy metal tolerance (high MIC values, ability to accumulate heavy metals and to grow in the presence of heavy metals) was thus demonstrated in this ectomycorrhizal fungus.  相似文献   

8.
The effect of different concentrations of Hg2+, Cd2+, and Pb2+ on ultrastructure, growth, respiration, photosynthesis, chlorophyll content, and metal accumulation in Euglena gracilis was examined. The toxicity of the heavy metals was dependent on the culture medium used and whether cells were grown in the dark or under illumination. Hg2+ was the most toxic metal, which showed effects at a concentration as low as 1.5 μM; Cd2+ showed an intermediate toxicity (effects observed above 50 μM); and Pb2+ was almost ineffective up to 1 mM. Cells grown for several weeks in the dark, in the presence of 1.5 μM Hg2+ showed a reduced sensitivity to subsequent exposure to Cd2+ or Pb2+. The Hg2+-pretreated cells also presented an enhanced capacity to accumulate other metals. In comparison, light-grown cells showed a greater Cd2+ accumulation, but a lower Pb2+ uptake than Hg2+-pretreated dark-grown cells. Pretreatment of light-grown cells with Hg2+ did not enhance the accumulation of Cd2+. These results suggest that the capacity to tolerate heavy metals by Euglena may have mechanistic differences when cells are grown in the dark or under illumination.  相似文献   

9.
Heavy metal ions are potent inhibitors of protein folding   总被引:3,自引:0,他引:3  
Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd2+, Hg2+ and Pb2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far.  相似文献   

10.
《Process Biochemistry》2007,42(10):1371-1377
By combining two functions of alginate gel and activated carbon, an activated carbon-containing alginate bead (AC-AB) adsorbent was developed and successfully used to simultaneously remove heavy metal ions and toxic organics. Quantitative analysis showed that almost all of the adsorption of toxic organics, such as p-toluic acid, is caused by the activated carbon in the AC-AB adsorbent, whereas the alginate component has a major role in the removal of heavy metals. A 50-L solution containing eight heavy metals (Pb2+, Mn2+, Cd2+, Cu2+, Zn2+, Fe2+, Al3+ and Hg2+) and four mineral ions was run continuously through a filter cartridge packed with 160 g of the AC-AB adsorbent. The adsorbent showed a high capacity to remove heavy metals completely from the water, while allowing essential minerals, such as K+, Na+, Mg2+ and Ca2+, to pass through the filter. The adsorbent could be regenerated using eluents, such as HNO3, and reused repeatedly without considerable loss of its metal uptake capacity through 10 subsequent cycles of adsorption and desorption. With its high capacity and high selectivity for toxic heavy metals, the AC-AB adsorbent has enormous potential for application in drinking water treatment technologies.  相似文献   

11.
In this work, the carbonic anhydrase (CA) enzyme was purified from Kangal Akkaraman sheep in Sivas, Turkey with specific activity value of 6681.57 EU/mg and yield of 14.90% with using affinity column chromatography. For designating the subunit molecular mass and enzyme purity, sodium dodecyl sulfate polyacrylamide gel electrophoresis method was used and single band for this procedure was obtained. The molecular mass of CA enzyme was found as 28.89 kDa. In this study, the optimum temperature and optimum pH were obtained from 30 and 7.5. Vmax and Km values for p‐nitrophenylacetate substrate of the CA were determined from Lineweaver–Burk graphs. Additionally, the inhibitory results of diverse heavy metal ions (Hg+, Fe2+, Pb2+, Co2+, Ag+, and Cu2+) on sheep were studied. Indeed, CA enzyme activities of Kangal sheep were investigated with using esterase procedure under in vitro conditions. The heavy metal concentrations inhibiting 50% of enzyme activity (IC50) and Ki values were obtained.  相似文献   

12.
Summary The cellular mechanisms by which nephrotoxic heavy metals injure the proximal tubule are incompletely defined. We used extracellular electrodes to measure the early effects of heavy metals and other sulfhydryl reagents on net K+ and Ca2+ transport and respiration (QO2) of proximal tubule suspensions. Hg2+, Cu2+, and Au3+ (10–4 m) each caused a rapid net K+ efflux and a delayed inhibition of QO2. The Hg2+-induced net K+ release represented passive K+ transport and was not inhibited by barium, tetraethylammonium, or furosemide. Both Hg2+ and Ag+ promoted a net Ca2+ uptake that was nearly coincident with the onset of the net K+ efflux. A delayed inhibition of ouabainsensitive QO2 and nystatin-stimulated QO2, indicative of Na+, K+-ATPase inhibition, was observed after 30 sec of exposure to Hg2+. More prolonged treatment (2 min) of the tubules with Hg2+ resulted in a 40% reduction in the CCCP-uncoupled QO2, indicating delayed injury to the mitochondria. The net K+ efflux was mimicked by the sulfhydryl reagents pCMBS and N-ethylmaleimide (10–4 m) and prevented by dithiothreitol (DTT) or reduced glutathione (GSH) (10–4 m). In addition, both DTT and GSH immediately reversed the Ag+-induced net Ca2+ uptake. Thus, sulfhydryl-reactive heavy metals cause rapid, dramatic changes in the membrane ionic permeability of the proximal tubule before disrupting Na+, K+-ATPase activity or mitochondrial function. These alterations appear to be the result of an interaction of the metal ions with sulfhydryl groups of cell membrane proteins responsible for the modulation of cation permeability.  相似文献   

13.
Heavy metal ion is one of the critical environmental pollutants accumulated in living organisms and causes toxic or carcinogenic effects once passed threshold levels. As an important member of Hsp70 (heat shock protein 70) family, the 78-kDa glucose-regulated protein (GRP78) can enhance cell survival rates remarkably under thermal stress. Recent studies also demonstrated that the expression of GRP78 enhances the cell survival under heavy metal stress. In this study, three most representative heavy metal ions, Pb2 +, Hg2 + and Cd2 +, were used to stimulate Ctenopharyngodon idella kidney (CIK) cells. The results showed that cell viability under Pb2 +, Hg2 + and Cd2 + stress decreased significantly. The longer and the greater the concentrations of stimulation from heavy metal ions, the higher the rate of cell death was observed. Among them, Hg2 + is the most hazardous to cells. Under the same stress condition, Hg2 + resulted in 50% of cell death, Cd2 + (or Pb2 +) led to 45% (or 35%) of cell death, respectively. Western immunoblotting indicated that C. idella GRP78 (CiGRP78) protein expression level was enhanced obviously in CIK cells under Pb2 +, Hg2 + and Cd2 + stress, meaning CiGRP78 is involved in heavy metal cytotoxicity. To further study the role of CiGRP78 in cytoprotection, we designed the siRNA against CiGRP78 (from nucleotides + 788 to + 806) and transfected it into CIK cells to silence endogenous CiGRP78. The viability rate of CIK cells transfected with or without siRNA incubated with HgCl2 for 12 h showed a significant decrease from 50% to 21%. Our results showed that CiGRP78 protects cells against heavy metal stimuli to some extent.  相似文献   

14.
Ion exchange or biosorptive processes for metalremoval generally lack specificity in metal bindingand are sensitive to ambient conditions, e.g. pH,ionic strength and the presence of metal chelators. Inthis study, cells of a genetically engineered Escherichia coli strain, JM109, which expressesmetallothionein and a Hg2+ transport system afterinduction were evaluated for their selectivity forHg2+ accumulation in the presence of sodium,magnesium, or cadmium ions and their sensitivity to pHor the presence of metal chelators during Hg2+bioaccumulation. The genetically engineered E.coli cells in suspension accumulated Hg2+effectively at low concentrations (0-20 µM) overa broad range of pH (3 to 11). The presence of 400 mMsodium chloride, 200 mM magnesium chloride, or100 µM cadmium ions did not have a significanteffect on the bioaccumulation of 5 µm Hg2+,indicating that this process is not sensitive to highionic strength and is highly selective against sodium,magnesium, or cadmium ions. Metal chelators usuallyinterfere with ion exchange or biosorptive processes.However, two common metal chelators, EDTA and citrate,had no significant effect on Hg2+ bioaccumulationby the genetically engineered strain. These resultssuggest that this E. coli strain could be usedfor selective removal of Hg2+ from waste water orfrom contaminated solutions which are resistant tocommon treatments. A second potential applicationwould be to remove Hg2+ from Hg2+-contaminated soil, sediment, or particulates bywashing them with a Hg2+ chelator andregenerating the chelator by passing the solutionthrough a reactor containing the strain.  相似文献   

15.
Paraoxonase (PON) is an organophosphate hydrolyser enzyme which also has antioxidant properties in metabolism. Due to its crucial functions, the inhibition of the enzyme is undesirable and very dangerous. PON enzyme activity should not be altered in any case. Inhibitory investigations of this enzyme are therefore important and useful. Metal toxicology of enzymes has become popular in the recent years. Here, we report the in vitro inhibitory effects of some metal ions, including Ni2+, Cd2+, Cu2+ and Hg2+, on the activity of shark serum PON (SPON). For this purpose, we first purified the enzyme from shark Scyliorhinus canicula (LINNAEUS, 1758) serum and analysed the alterations in the enzyme activity in the presence of metal ions. The KM and Vmax is 0.227?mM and 454.545?U/mL, respectively. The results show that metal ions exhibit inhibitory effects on SPON1 at low concentrations with IC50 values ranging from 0.29 to 2.00?mM. Copper was determined to be the most effective inhibitor with IC50 of 0.29?mM.  相似文献   

16.
Enzyme urease is extracted from the discarded seeds of pumpkin. Urease was purified to apparent homogeneity (5.2 fold) by heat treatment at 48 ± 1°C and gel filtration through Sephadex G-200. Effect of model metal ions on the activity of the homogeneous enzyme preparation (sp. activity 353 U/mg protein, A280/A260 = 1.12) of soluble as well as immobilized enzyme was investigated. The soluble and immobilized urease has been used for the quantitative estimation of general water pollution with heavy metal ions like Hg2+, Cu2+, Cd2+, and Co2+. The measurements of the urease residual activity have been carried out in tris-acetate buffer after pre-incubation of model metal salt. The inhibition was found to be biphasic with an initial rapid loss of activity and remainder in slow phase of 10∼15 min. The immobilization was done in 3.5% alginate beads leading to 86% of entrapment. There was no leaching of the enzyme over a period of 15 days at 4°C. The beads were fairly stable up to 50°C and exhibited activity even at −10°C. The inhibition by these ions was non-competitive and irreversible, hence could not be restored by dialysis. Based on the values of inhibition constant Ki the heavy-metal ions were found to inhibit urease in the following order Hg2+ > Cu2+ > Cd2+ > Co2+.  相似文献   

17.
The effect of equimolar concentrations of Hg2+ and Cd2+ on the whole cell absorption spectra, absorption spectra of the extracted phycocyanin (PC) and fluorescence emission spectra of phycobilisomes (PBS) was investigated in the cells of Anabaena flos-aquae. The PC component of the PBS was found to be extremely sensitive to the Hg2+ rather than the Cd2+ ions. Further, the results showed that Hg2+ and Cd2+ induced decrease in the rate of Hill activity (H2O - DCPIP) was partially restored by the electron donor NH2OH, not by the diphenyl carbazide. Similarly, chlorophyll a fluorescence emission in the presence of metals showed that addition of NH2OH could effectively reverse the metal induced alterations in the fluorescence emission intensity. These results, together, suggested that Hg2+ and Cd2+ caused damage to the photosystems (PS) II reaction center. However, a relatively higher stimulation of the chlorophyll a emission at 695 nm with a red shift of 4.0 nm in the presence of Hg2+, and Cd2+ induced preferential decrease in the emission intensity at 676 nm as compared with the peak at 695 nm were indicative of the differential action of Hg2+ and Cd2+ on the PS II.  相似文献   

18.
The capacity of various metal ions to support activation of bovine factor IX, by the coagulant protein of Russell's Viper venom, has been examined. The following metal ions, at concentrations which saturate their effect, promoted activation of factor IX, at approximately equal efficiency: Ca2+, Mn2+, Sr2+, and Co2+, Other metal ions, i.e., Ba2+, and Mg2+, at saturating concentrations, led to a maximum rate of activation of factor IX of 25%, compared to Ca2+, The lanthanides, Gd2+, and Tb3+, also promoted activation in this system, at maximal rates of approximately 15%, compared to Ca2+, In this study, it was also discovered that the esterase activity of bovine factor IXa was dependent upon the presence of metal ions. Utilizing α-N-benzoyl-l-arginine ethyl ester as the substrate, steady state kinetic analysis in the absence of metal ion indicated that the Km and Vmax for this substrate was 20 mm and 2.9 μmol substrate cleaved min?1 mg?1 of factor IXa, respectively, at pH 8.0 and 30 °C. In the presence of optimal concentrations of Ca2+, Mn2+, Mg2+, Sr2+, and Ba2+, the Vmax values for this same substrate increased to 6.7, 5.9, 5.0, 5.0, and 3.7 μmol cleaved min?1 mg?1 of factor IXa, respectively. None of these metal ions had an affect on the Km value of this substrate.  相似文献   

19.
为了探讨重金属Cd2+和Cu2+胁迫对泥蚶消化酶活性的影响,运用酶学分析的方法,按《渔业水质标准》(GB 11607)规定的Cd2+、Cu2+最高限量值的1、2、5、10倍设置重金属离子Cd2+、Cu2+浓度及其组合,研究了在重金属Cd2+、Cu2+胁迫下,30d内泥蚶3种消化酶活性的变化规律。结果表明:与空白对照组相比,在重金属Cd2+、Cu2+或其组合的胁迫下,较低浓度组泥蚶的淀粉酶活性实验前期增强(即被诱导),实验后期减弱(即被抑制),较高浓度组泥蚶的淀粉酶活性从实验一开始就减弱,并保持在较低水平,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合Cu2+ > (Cd2++Cu2+)组合 > Cd2+;泥蚶脂肪酶的活性实验前期增强,实验后期转为微减弱或减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+;泥蚶胃蛋白酶的活性实验前期增强,且活性呈现升高-降低-再升高-再降低的变化,实验后期分别表现微增强、微减弱和减弱,毒性比较,同一重金属高浓度 > 低浓度,不同重金属及其组合(Cd2++Cu2+)组合 > Cu2+ > Cd2+。可见:环境中的Cd2+和Cu2+对泥蚶的消化酶活性起着明显的影响作用。  相似文献   

20.
The aim of the present study was to investigate the effects of environmental pollutants, such as heavy metals and pesticides on ion transport across the skin of the leech (Hirudo medicinalis). We wanted to examine the suitability of this epithelium as a model system for studies concerning the mechanisms of toxic action caused by environmental pollutants. For this purpose we performed Ussing chamber experiments to test three representative heavy metals and pesticides, respectively, for their effects on current flow across leech dorsal integument. Two representatives of each substance class showed distinct effects on ion transport across this epithelium. The heavy metal ions Pb2+ and Hg2+ produced a significant inhibition of amiloride-sensitive Na+ transport across leech skin in concentrations below or close to their limiting values in waste water. Therefore, it seems feasible to use leech skin for future investigations of the toxic actions of these heavy metals. The fact that Pb2+ and Hg2+ exerted their effects only when applied apically points to a specific action of these divalent cations on ion channels in the apical membrane. However, this inhibition does not seem to be a general feature of divalent cations because Cd2+ did not influence ion transport across leech skin at all. Since current flow through amiloride-sensitive Na+ channels in typical vertebrate tight epithelia is stimulated by numerous divalent cations, the pronounced inhibition of amiloride-sensitive Na+ channels in leech skin by Pb2+ and Hg2+ might lead to a further differentiation of amiloride-sensitive Na+ channels. The two widespread pesticides lindane and promecarb exerted their effects only at comparativ high concentrations. This low sensitivity restricts the usefulness of leech skin as a subject for further analysis of toxicity mechanisms, at least for these two pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号