首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein we present Gene-Collector, a method for multiplex amplification of nucleic acids. The procedure has been employed to successfully amplify the coding sequence of 10 human cancer genes in one assay with uniform abundance of the final products. Amplification is initiated by a multiplex PCR in this case with 170 primer pairs. Each PCR product is then specifically circularized by ligation on a Collector probe capable of juxtapositioning only the perfectly matched cognate primer pairs. Any amplification artifacts typically associated with multiplex PCR derived from the use of many primer pairs such as false amplicons, primer-dimers etc. are not circularized and degraded by exonuclease treatment. Circular DNA molecules are then further enriched by randomly primed rolling circle replication. Amplification was successful for 90% of the targeted amplicons as seen by hybridization to a custom resequencing DNA micro-array. Real-time quantitative PCR revealed that 96% of the amplification products were all within 4-fold of the average abundance. Gene-Collector has utility for numerous applications such as high throughput resequencing, SNP analyses, and pathogen detection.  相似文献   

2.
王璐茜  邹秉杰  周国华 《生物磁学》2011,(14):2797-2800
聚合酶链式反应(PCR)是一种高灵敏核酸扩增技术,广泛应用于核酸检测中。但在实际应用过程中,扩增产物及其他核酸片段的污染会导致假阳性的结果,制约了PCR在临床检测中的应用。为了解决这一问题,建立了许多PCR防污染的方法,除了早期建立的并已得到广泛应用的物理隔绝法、光照法及水解法外,近年来还发展了酶消化法、化学修饰法及DEAE纤维素法。本文对PCR防污染技术的原理、应用及进展进行了综述。  相似文献   

3.
Molecular diagnosis of medical viruses   总被引:1,自引:0,他引:1  
The diagnosis of infectious diseases has been revolutionized by the development of molecular techniques, foremost with the applications of the polymerase chain reaction (PCR). The achievable high sensitivity and ease with which the method can be used to detect any known genetic sequence have led to its wide application in the life sciences. More recently, real-time PCR assays have provided additional major contributions, with the inclusion of an additional fluorescent probe detection system resulting in an increase in sensitivity over conventional PCR, the ability to confirm the amplification product and to quantitate the target concentration. Further, nucleotide sequence analysis of the amplification products has facilitated epidemiological studies of infectious disease outbreaks, and the monitoring of treatment outcomes for infections, in particular with viruses which mutate at high frequency. This review discusses the applications of qualitative and quantitative real-time PCR, nested PCR, multiplex PCR, nucleotide sequence analysis of amplified products and quality assurance with nucleic acid testing (NAT) in diagnostic laboratories.  相似文献   

4.
近年来,CRISPR/Cas系统已经成为转录调控和基因组编辑的重要工具。除了在基因编辑领域的贡献,CRISPR/Cas系统独特的靶核酸顺式切割和非特异性单链核酸反式切割能力,在开发核酸检测的新型生物传感器方面展现出巨大潜力。构建基于CRISPR/Cas系统高灵敏度生物传感器的关键通常依赖其与不同信号扩增策略,诸如核酸扩增技术或特定信号转导方法的结合。基于此,本文旨在通过介绍不同类型的CRISPR/Cas系统,全面概述基于该系统的核酸检测生物传感器的研究进展,并重点对结合核酸扩增技术(PCR、LAMP、RCA、RPA和EXPAR)、灵敏的信号转导方法(电化学和表面增强拉曼光谱)和特殊结构设计生物传感的三大类型信号放大策略的CRISPR/Cas生物传感器进行总结和评论。最后,本文对目前的挑战以及未来的前景进行展望。  相似文献   

5.
In situ hybridization (ISH) has proved to be an invaluable molecular tool in research and diagnosis to visualize nucleic acids in their cellular environment. However, its applicability can be limited by its restricted detection sensitivity. During the past 10 years, several strategies have been developed to improve the threshold levels of nucleic acid detection in situ by amplification of either target nucleic acid sequences before ISH (e.g., in situ PCR) or the detection signals after the hybridization procedures. Here we outline the principles of tyramide signal amplification using the catalyzed reporter deposition (CARD) technique, present practical suggestions to efficiently enhance the sensitivity of ISH with CARD, and discuss some applications and possible future directions of in situ nucleic acid detection using such an amplification strategy.  相似文献   

6.
实时定量PCR技术及其应用   总被引:45,自引:0,他引:45  
实时定量PCR(Real—time Quantitative Polymerase Chain Reaction,RQ—PCR)技术是20世纪90年代中期发展起来的一种新型核酸定量技术。该技术具有实时监测、快速、灵敏、精确等特点,是对原有PCR技术的革新,扩大了PCR的应用范围。本文综述了RQ—PCR技术的原理、RQ—PCR仪、RQ—PCR实时定量检测系统及其应用。  相似文献   

7.
We have developed a new method for the detection of nucleic acid hybridization, based on a simple latex agglutination test that can be evaluated by the unaided eye. Nucleic acid, e.g., a polymerase chain reaction (PCR) product, is denatured and incubated with polystyrene beads carrying covalently bound complementary oligonucleotide sequences. Hybridization of the nucleic acids leads to aggregation of the latex particles, thereby verifying the presence of target sequence. The test is performed at room temperature, and results are available within 10 min. As a proof of principle, the hybridization/latex agglutination assay was applied to the detection of purified PCR fragments either specific for Salmonella spp. or a synthetic sequence, and to the detection of Salmonella enterica in artificially contaminated chicken samples. A few nanograms of purified PCR fragments were detectable. In artificially contaminated chicken samples, 3 colony-forming units (cfu)/25 g were detected in one of three replicates, and 30 cfu/25 g were detected in both of two replicates when samples for PCR were taken directly from primary enrichment, demonstrating the practical applicability of this test system. Even multiplex detection might be achievable. This novel kind of assay could be useful for a range of applications where hybridization of nucleic acids, e.g., PCR fragments, is to be detected.  相似文献   

8.
The introduction of real-time PCR technology has significantly improved and simplified the quantification of nucleic acids, and this technology has become an invaluable tool for many scientists working in different disciplines. Particularly in the field of molecular diagnostics and genotyping, real-time PCR-based assays have gained favour in the recent past. Rapid real-time PCR diagnosis can result in appropriate control measures and eradication procedures in a faster and more accurate way than traditional methods based on pathogen isolation. Real-time quantitative PCR represents a highly sensitive and powerful technique for the gel-free detection of nucleic acids. In this review, the main chemistries used for the detection of PCR product during real-time PCR, as well as advantages and limitations of real-time PCR will be depicted. Furthermore, the existing literature as it applies to plant pathogens detection in the routine and research laboratory will be reviewed in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits.  相似文献   

9.
Real-time PCR in virology   总被引:52,自引:0,他引:52       下载免费PDF全文
The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5′ endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.  相似文献   

10.
数字聚合酶链反应(polymerase chain reaction,PCR)采用与定量PCR相同的荧光化学原理和不同的数学原理来实现对靶标核酸序列的绝对定量,其摒弃了对外部参照的依赖,同时具有更高的数据精密度,提高了重复性和再现性。数字PCR的应用涵盖生命科学众多领域,特别是在医学检验领域,其对疾病相关核酸分子标记的准确分析,为疾病的早期诊断、进展监测、疗效评估提供了动态量化指标。数字PCR的出现将推动基于核酸扩增技术的分子生物学检测迈入精准定量阶段。本文就数字PCR尤其是微滴式数字PCR在感染性疾病中的应用进展及前沿进行综述。  相似文献   

11.
12.
Pre-PCR processing   总被引:1,自引:0,他引:1  
Polymerase chain reaction (PCR) is recognized as a rapid, sensitive, and specific molecular diagnostic tool for the analysis of nucleic acids. However, the sensitivity and kinetics of diagnostic PCR may be dramatically reduced when applied directly to biological samples, such as blood and feces, owing to PCR-inhibitory components. As a result, pre-PCR processing procedures have been developed to remove or reduce the effects of PCR inhibitors. Pre-PCR processing comprises all steps prior to the detection of PCR products, that is, sampling, sample preparation, and deoxyribonucleic acid (DNA) amplification. The aim of pre-PCR processing is to convert a complex biological sample with its target nucleic acids/cells into PCR-amplifiable samples by combining sample preparation and amplification conditions. Several different pre-PCR processing strategies are used: (1) optimization of the DNA amplification conditions by the use of alternative DNA polymerases and/or amplification facilitators, (2) optimization of the sample preparation method, (3) optimization of the sampling method, and (4) combinations of the different strategies. This review describes different pre-PCR processing strategies to circumvent PCR inhibition to allow accurate and precise DNA amplification.  相似文献   

13.
聚合酶链式反应(PCR)是一种高灵敏核酸扩增技术,广泛应用于核酸检测中.但在实际应用过程中,扩增产物及其他核酸片段的污染会导致假阳性的结果,制约了PCR在临床检测中的应用.为了解决这一问题,建立了许多PCR防污染的方法,除了早期建立的并已得到广泛应用的物理隔绝法、光照法及水解法外,近年来还发展了酶消化法、化学修饰法及DEAE纤维素法.本文对PCR防污染技术的原理、应用及进展进行了综述.  相似文献   

14.
Efficient primer design algorithms   总被引:5,自引:0,他引:5  
MOTIVATION: Primer design involves various parameters such as string-based alignment scores, melting temperature, primer length and GC content. This entails a design approach from multicriteria decision making. Values of some of the criteria are easy to compute while others require intense calculations. RESULTS: The reference point method was found to be tractable for trading-off between deviations from ideal values of all the criteria. Some criteria computations are based on dynamic programs with value iteration whose run time can be bounded by a low-degree polynomial. For designing standard PCR primers, the scheme offers in a relative gain in computing speed of up to 50: 1 over ad-hoc computational methods. Single PCR primer pairs have been used as model systems in order to simplify the quantization of the computational acceleration factors. The program has been structured so as to facilitate the analysis of large numbers of primer pairs with minor modifications. The scheme significantly increases primer design throughput which in turn facilitates the use of oligonucleotides in a wide range of applications including: multiplex PCR and other nucleic acid-based amplification systems, as well as in zip code targeting, oligonucleotide microarrays and nucleic acid-based nanoengineering.  相似文献   

15.
16.
实时定量PCR技术及应用   总被引:9,自引:0,他引:9  
实时定量PCR(Real-tim e Quantitative Polym erase Chain Reaction,RQ-PCR),是20世纪90年代中期发展起来的基于PCR技术的利用不同的荧光检测来给核酸定量的技术。克服了传统PCR的许多不足,能准确敏感地检测模板浓度,DNA拷贝数和检测基因变异。综述了RQ-PCR技术的原理,RQ-PCR实时定量检测系统及应用。  相似文献   

17.
18.
Application of polymerase chain reaction (PCR) techniques has developed significantly from a qualitative technology to include powerful quantitative technologies, including real-time PCR, which are regularly used for detection and quantification of nucleic acids in many settings, including community analysis where culture-based techniques are not suitable. Many applications of real-time PCR involve absolute quantification which is susceptible to inaccuracies caused by losses during DNA extraction or inhibition caused by co-extracted compounds. We present here an improvement to this approach involving the addition of an artificial internal standard, prior to nucleic acid extraction. The standard was generated by in-situ mutagenesis from an E. coli template to ensure it both did not amplify with bacterial primers used for quantification and was short enough to minimise possible interference with other analyses. By estimating gene target copies by relative abundance, this approach accounts for both loss during extraction and inhibition effects. We present a novel application of relative real time PCR, using the internal standard as a reference, allowing accurate estimation of total bacterial populations both within and across a wide range of soils and demonstrate its improvement over absolute quantification by comparison of both approaches to ester linked fatty acid analysis of the same soils.  相似文献   

19.
肽核酸在分子生物学技术中的应用   总被引:1,自引:0,他引:1  
肽核酸(PNA)作为一种人工合成的核酸类似物,以中性的肽链酰胺2-氨基乙基甘氨酸键取代了DNA中的戊糖磷酸二酯键骨架,其余部分与DNA相同。PNA可通过Watson-Crick碱基配对的形式识别并结合DNA或RNA序列,形成稳定的双螺旋结构。与传统的DNA或RNA相比,PNA具有生物学稳定性高、杂交特异性强、杂合体的稳定性高和杂交速度快等明显优点,使PNA具有良好的物理化学性质和生物学特性,在检测目的核酸序列中单碱基突变、PCR基因分子诊断与检测、荧光原位杂交定量分析、基因芯片和生物传感器技术等调控水平和临床应用上有自己的特点。简要综述了近年来肽核酸在上述分子生物学技术中的运用以及应用前景的展望。  相似文献   

20.
癌症的早期诊断可提高患者生存率.微创采集人体体液的液体活检方法可避免传统肿瘤组织活检方法侵入性和异质性的问题,逐渐成为癌症诊断的新方式.另外,DNA甲基化作为预测癌症发生发展的标志物,引起了越来越多研究者的关注.但传统DNA甲基化的检测方法灵敏度不高,且容易出现假阳性.近年来,数字PCR技术因其超高的检测灵敏度和精确度、无需标准曲线即可进行核酸绝对定量检测的优势,被用于DNA甲基化的定量检测中.本文首先介绍了DNA甲基化与癌症发生发展的关系,总结了传统DNA甲基化检测方法及其在癌症临床诊断中的应用,阐述了基于不同核酸样本分散方法的数字PCR技术及其在微量DNA甲基化检测中的优势,总结了采用数字PCR技术检测癌症患者体液中DNA甲基化的具体步骤,列举了数字PCR技术在癌症DNA甲基化检测中的研究成果及应用进展,最后提出了数字PCR技术检测癌症DNA甲基化未来可能面临的挑战,并对数字PCR技术在癌症液体活检方面的应用前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号