首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NICTABA is a carbohydrate-binding protein (also called lectin) that is expressed in several Nicotiana species after treatment with jasmonates and insect herbivory. Analyses with tobacco lines overexpressing the NICTABA gene as well as lines with reduced lectin expression have shown the entomotoxic effect of NICTABA against Lepidopteran larvae, suggesting a role of the lectin in plant defense. Until now, little is known with respect to the upstream regulatory mechanisms that are controlling the expression of inducible plant lectins. Using Arabidopsis thaliana plants stably expressing a promoter-β-glucuronidase (GUS) fusion construct, it was shown that jasmonate treatment influenced the NICTABA promoter activity. A strong GUS staining pattern was detected in very young tissues (the apical and root meristems, the cotyledons and the first true leaves), but the promoter activity decreased when plants were getting older. NICTABA was also expressed at low concentrations in tobacco roots and expression levels increased after cold treatment. The data presented confirm a jasmonate-dependent response of the promoter sequence of the tobacco lectin gene in Arabidopsis. These new jasmonate-responsive tobacco promoter sequences can be used as new tools in the study of jasmonate signalling related to plant development and defense.  相似文献   

2.
3.
We have analysed the patterns of expression of a gene encoding -glucuronidase (GUS) fused to the promoter of theAgrobacterium tumefaciens T-DNA gene 5 during embryogenesis in carrot,Daucus carota L. Gene expression was monitored by a histochemical assay of -glucuronidase activity. The gene 5 promoter, although of bacterial origin, conferred expression upon the marker gene in all stages of embryo development. The patterns of expression however, differed between embryos in different stages of development. In the globular stage expression was confined to the basal part of the embryo, suggesting that the promoter is sensitive to regulatory functions active in the primary establishment of polarity in the radially symmetric globular embryo. In the heart and torpedo stages of development GUS expression was high in the entire embryonic axis, but not in the cotyledons. During germination expression was reduced in the elongating hypocotyl and radicle, and high levels of expression were detected only in the shoot and root apices. Among the transformed cell lines analysed, one was found that showed an aberrant pattern of GUS expression during embryogenesis, in that expression in the upper part of the embryo was undetectable, and expression was restricted to the root apex in later stages of development. This difference in organ specificity of expression is likely due to a large deletion of the promoter.  相似文献   

4.
5.
The white mustard ( Sinapis alba L.) Lhcb1*1 and PsbP*1 genes that code for proteins related to photosystem II (PSII) in chloroplasts were examined by analysis of promoter fragment β-glucuronidase (GUS) reporter constructs in transgenic tobacco ( Nicotiana tabacum L.) seedlings. The endogenous tobacco genes and the introduced mustard genes follow the same kinetics during seedling development and they show the same expression characteristics for light regulation and for the influence of a 'plastidic signal'. Hence, the cellular environment of the host plant always dominates the regulation of Lhcb1*1 and PsbP*1 gene expression; as with the mustard system clear differences in the temporal pattern and the physiological responses could be seen. The spatio-temporal pattern of gene expression was analysed in the different organs of the transgenic tobacco seedlings. In the cotyledons, expression at the PsbP*1 promoter starts in advance, and both genes show a rather uniform distribution of expression during seedling development. In the hypocotyl, a sequential basipetal pattern could be detected and a coordinated expression for the two promoters was analysed. The hypocotyl base is only included in this expression pattern if the seedlings receive light at early stages of development, whereas in later stages gene expression is repressed. A model is proposed that divides tobacco seedling development into three main phases.  相似文献   

6.
Potential promoter regions of the Banana bunchy top virus (BBTV)-associated DNA components S1 and S2 were fused to the #-glucuronidase reporter gene and assessed for activity in both tobacco (Nicotiana tabacum cv. Xanthi) and banana (Musa spp. cv. Bluggoe). Transient assays indicated that all the S1- and S2-derived promoters were active and had greater expression in tobacco than banana. In stably transformed tobacco and banana, the S1- and S2-derived promoters directed expression in root meristems and trichomes. The S1 promoter was also expressed in the vascular tissue of leaves and roots, while both the S1 and S2 promoters were active in tobacco leaf trichomes and pollen. In banana, expression was significantly enhanced by the inclusion of the maize polyubiquitin intron 3' to the promoter. Interestingly, there was some evidence to indicate that S1 promoter fragments containing part of the open reading frame at the 5' end of the promoter had enhanced activity, suggesting that promoter elements may not be confined to the non-coding region.  相似文献   

7.
Farnesyl diphosphate synthase (FPS), the enzyme that catalyses the synthesis of farnesyl diphosphate (FPP) from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), is considered a regulatory enzyme of plant isoprenoid biosynthesis. The promoter regions of the FPS1 and FPS2 genes controlling the expression of isoforms FPS1S and FPS2, respectively, were fused to the -glucuronidase (GUS) reporter gene and introduced into Arabidopsis thaliana plants. The FPS1S:GUS gene is widely expressed in all plant tissues throughout development, thus supporting a role for FPS1S in the synthesis of isoprenoids serving basic plant cell functions. In contrast, the FPS2:GUS gene shows a pattern of expression restricted to specific organs at particular stages of development. The highest levels of GUS activity are detected in flowers, especially in pollen grains, from the early stages of flower development. After pollination, much lower levels of GUS activity are detected in the rest of floral organs, with the exception of the ovary valves, which remain unstained throughout flower development. GUS activity is also detected in developing and mature seeds. In roots, GUS expression is primarily detected at sites of lateral root initiation and in junctions between primary and secondary roots. No GUS activity is detected in root apical meristems. GUS expression is also observed in junctions between primary and secondary stems. Overall, the pattern of expression of FPS2:GUS suggests a role for FPS2 in the synthesis of particular isoprenoids with specialized functions. Functional FPS2 gene promoter deletion analysis in transfected protoplasts and transgenic A. thaliana plants indicate that all the cis-acting elements required to establish the full pattern of expression of the FPS2 gene are contained in a short region extending from positions –111 to +65. The potential regulatory role of specific sequences within this region is discussed.  相似文献   

8.
Tissue-specific expression of the gene coding for trypsin inhibitor BTI-CMe in barley (Itr1) occurs during the first half of endosperm development. In transgenic tobacco, theItr1 promoter drives expression of the β-glucuronidase reporter gene not only in developing endosperm but also in embryo, cotyledons and the meristematic intercotyledonary zone of germinating seedlings. A promoter fragment extending 343 bp upstream of the translation initiation ATG codon was sufficient for full transgene expression, whereas, the proximal 83 bp segment of the promoter was inactive. Possible reasons for the differences in expression patterns are discussed.  相似文献   

9.
The pattern of expression directed by the promoter of the maize Tub α 1 gene was investigated by analysis of chloramphenicol acetyl transferase (CAT) and β-glucuronidase (GUS) activities in transient expression experiments of maize and tobacco protoplasts. The same promoter was also investigated by histochemical GUS analysis in transgenic tobacco plants containing promoter gene fusions. As determined by histochemical tests, the Tub α 1 promoter gene preferentially directs GUS expression in regenerating root tip meristems and pollen. This pattern corresponds to the distinctive features of natural expression of the gene in maize as determined by Northern analysis. However, no expression is observed in other meristematic tissues of the transgenic tobacco plants, as in shoot apex or in coleoptiles, which is weakly detected in maize. Analysis of the regulatory properties of 5' promoter deletions showed that the proximal region of the promoter, from positions −1410 or −449 to 15 bp upstream of the ATG, is sufficient to establish the qualitative pattern of expression in transgenic tobacco plants. Deletions to positions −352 or −117 abolished the expression in roots, but not in pollen, suggesting that upstream of these positions there are elements responsible for the pattern in root. Further deletions abolished all the promoter activity, suggesting that this promoter region contains the elements essential for expression in pollen. The different patterns and levels of transient and stable expression are discussed.  相似文献   

10.
11.
PSG076 is a pollen-specific gene isolated from wheat. The 1.4-kb promoter upstream of the ATG start codon was isolated by inverse-PCR (IPCR). To determine its activity, the PSG076 promoter was fused with the ??-glucuronidase (GUS) reporter gene and introduced into tobacco. Histochemical analysis in transgenic tobacco showed that GUS activity was detected in late bicellular pollen grains and increased rapidly in mature pollen. GUS activity was also detected in pollen tubes of transgenic tobacco. No GUS activity was found in other floral and vegetable tissues. These results indicate that the PSG076 promoter directs pollen-specific activity at late stages of pollen development and pollen tube growth. Deletion analysis showed that a 0.4?kb fragment of the promoter was enough to confer pollen-specific expression.  相似文献   

12.
In higher plants, the root-shoot axis established during embryogenesis is extended and modified by the development of primary and lateral apical meristems. While the structure of several shoot apical meristems has been deduced by combining histological studies with clonal analysis, the application of this approach to root apical meristems has been limited by a lack of visible genetic markers. We have tested the feasibility of using a synthetic gene consisting of the maize transposable elementActivator (Ac) inserted between a 35S CaMV promoter and the coding region of a -glucuronidase (GUS) reporter gene as a means of marking cell lineages in roots. The GUS gene was activated in individual cells byAc excision, and the resulting sectors of GUS-expressing cells were detected with the histochemical stain X-Gluc. Sectors in lateral roots originated from bothAc excision in meristematic cells and from parent root sectors that bisect the founder cell population for the lateral root initial. Analysis of root tip sectors confirmed that the root cap, and root proper have separate initials. Large sectors in the body of the lateral root encompassed both cortex and vascular tissues. The number of primary initial cells predicted from the size and arrangement of the sectors observed ranged from two to four and appeared to vary between roots. We conclude that transposon-based clonal analysis using GUS expression as a genetic marker is an effective approach for deducing the functional organization of root apical meristems.  相似文献   

13.
A 1023 bp fragment and truncated derivatives of the maize (Zea mays L.) histone H3C4 gene promoter were fused to the ß-glucuronidase (GUS) gene and introduced via Agrobacterium tumefaciens into the genome of Arabidopsis thaliana. GUS activity was found in various meristems of transgenic plants as for other plant histone promoters, but unexplained activity also occurred at branching points of both stems and roots. Deletion of the upstream 558 bp of the promoter reduced its activity to an almost basal expression. Internal deletion of a downstream fragment containing plant histone-specific sequence motifs reduced the promoter activity in all tissues and abolished the expression in meristems. Thus, both the proximal and distal regions of the promoter appear necessary to achieve the final expression pattern in dicotyledonous plant tissues. In mesophyll protoplasts isolated from the transformed Arabidopsis plants, the full-length promoter showed both S phase-dependent and -independent activity, like other plant histone gene promoters. Neither of the 5-truncated nor the internal-deleted promoters were able to direct S phase-dependent activity, thus revealing necessary cooperation between the proximal and distal parts of the promoter to achieve cell cycle-regulated expression. The involvement of the different regions of the promoter in the different types of expression is discussed.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号