首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in various components of photosynthetic apparatus during the 4 d dark incubation at 25°C of detached control and ultraviolet-B (UV-B) treatedVigna unguiculata L. leaves were examined. The photosynthetic apparatus was more degraded in younger control seedlings and for a longer time UV-B treated seedlings than in the older or for a shorter time UV-B treated seedlings. This was shown by determining the losses in chlorophyll (Chl) and protein contents, variable fluorescence yield, photosystem (PS) 2, PS1 and ribulose-1,5-bisphosphate carboxylase (RuBPC) activities, and photosynthetic14CO2 fixation. In contrast, the Car/Chl ratio increased during the dark incubation due to less expressed degradation of Car.  相似文献   

2.
Jayakumar  M.  Eyini  M.  Lingakumar  K.  Kulandaivelu  G. 《Photosynthetica》2002,40(1):85-89
The effects of enhanced UV-B radiation on growth and photosynthetic activities were investigated in fronds of the aquatic fern Azolla microphylla Kaulf. The fronds were exposed to UV-B radiation intermittently once in 3 d during 12 d. Biomass and relative growth rate of UV-B treated Azolla plants and the heterocyst frequency of the UV-B treated symbiont decreased resulting in an increase in doubling time over the control. The doubling time was 3.08 d for control and 3.35 d for UV-B irradiated plants. Chl and carotenoid contents per unit fresh mass and photosystem 2 (PS2) activity also decreased under UV-B treatment. Measurements of photosynthetic activity in terms of fluorescence kinetics and PS2 mediated O2 evolution showed that the aquatic fern Azolla is sensitive to UV-B damage.  相似文献   

3.
The alterations in structure and function of photosystem II (PS II) during the senescence of primary leaves of wheat seedlings have been compared with the changes induced by ultraviolet-B (UV-B) radiation in the presence or absence of photosynthetically active radiation (PAR). The results indicated that the senescence-induced loss in pigment content, thylakoid membrane integrity and carotenoid-to-chlorophyll (Car-to-Chl) energy transfer efficiency was intensified by exposure to UV-B radiation. Different parameters for the measurement of PS II activity, such as Chl a fluorescence, O2-evolution and thermoluminescence intensity, were altered during senescence and these alterations were furthered by UV-B irradiation. The damage of photosynthetic apparatus by UV-B exposure in the presence of PAR was less than the damage in absence of PAR. The activation of molecular defense mechanisms could be a factor in the alleviation of UV-B damage in the presence of PAR.  相似文献   

4.
在增强UV-B辐射下,以3年生兴安落叶松幼苗为实验材料,研究了外源NO供体硝普钠(Sodium nitroprusside,SNP)对幼苗的光合色素(Chla、Chlb和Car)和叶绿素荧光参数的影响。方差分析结果表明0.5 mmol·L-1的SNP对增补UV B胁迫下的兴安落叶松幼苗产生显著影响。0.5 mmol·L-1的SNP能够显著抑制增补UV-B辐射后光合色素、Fv/FmΦPSⅡFv′/Fm′和qP的明显下降以及Chla /Chlb、FoNPQ的升高。表明了外源NO能够减轻UV-B辐射胁迫下兴安落叶松幼苗光合反应中心的生理损伤,从而增强兴安落叶松幼苗对增补UV-B辐射胁迫环境的适应能力。  相似文献   

5.
The effects of ultraviolet-B (UV-B: 280-320 nm) radiation on the photosynthetic pigments, primary photochemical reactions of thylakoids and the rate of carbon assimilation (Pn) in the cotyledons of clusterbean (Cyamopsis tetragonoloba) seedlings have been examined. The radiation induces an imbalance between the energy absorbed through the photophysical process of photosystem (PS) II and the energy consumed for carbon assimilation. Decline in the primary photochemistry of PS II induced by UV-B in the background of relatively stable Pn, has been implicated in the creation of the energy imbalance. The radiation induced damage of PS II hinders the flow of electron from QA to QB resulting in a loss in the redox homeostasis between the QA to QB leading to an accumulation of QA. The accumulation of QA generates an excitation pressure that diminishes the PS II-mediated O2 evolution, maximal photochemical potential (Fv/Fm) and PS II quantum yield (ΦPS II). While UV-B radiation inactivates the carotenoid-mediated protective mechanisms, the accumulation of flavonoids seems to have a small role in protecting the photosynthetic apparatus from UV-B onslaught. The failure of protective mechanisms makes PS II further vulnerable to the radiation and facilitates the accumulation of malondialdehyde (MDA) indicating the involvement of reactive oxygen species (ROS) metabolism in UV-B-induced damage of photosynthetic apparatus of clusterbean cotyledons.  相似文献   

6.
Changes in growth characteristics and photochemical activities inVigna unguiculata L. Walp seedlings maintained at constant temperature of 10, 20, 30 and 40 ‡C under control and ultraviolet-B enhanced radiation (UV-B) were investigated. UV-B retarded the shoot elongation and also leaf expansion to a great extent at 30 ‡C but produced only marginal changes at 20 and 40 ‡C. Similar response was also observed with respect to changes in leaf fresh and dry masses and total chlorophyll (Chl) content under these temperatures. At 10 ‡C the total Chl content was 3-fold higher under the treatment than under control conditions. In seedlings growing at 20 and 30 ‡C the overall photosynthetic electron transport (H2O -> methyl viologen) showed a significant enhancement during the 36-h UV-B treatment and thereafter a gradual reduction. Although a similar trend was found in photosystem 1 (PS1), the inhibition even after 60 h of UV-B treatment was not statistically significant. Photosystem 2 (PS2) activity was inhibited in seedlings treated for 60 h by UV-B at 20 and 30 ‡C. However, no inhibition was observed at 40 ‡C. No detectable photochemical activity was found in seedlings grown at 10 ‡C under either control or UV-B enhanced irradiation although the chloroplasts contained Chl. This work was supported by a Research Associateship to N.N. from the Council of Scientific and Industrial Research (India) and by a grant from the Ministerio de Education y Ciencia (ref. 5894- AM086772).  相似文献   

7.
The effect of supplementary UV-B radiation on Korean pine (Pinus koraiensis Sieb. et Zucc) was investigated. Compared with the control, the T1, T2, and T3 UV-B treatments increased by 1.40, 2.81, and 4.22 kJ m?2 d?1, respectively. Gas-exchange parameters, photosynthetic pigment concentrations, contents of secondary metabolites, epicuticular wax, free radical, malondialdehyde (MDA), and the activities of antioxidant enzymes were determined after 40 d of exposure. The concentrations of chlorophyll (Chl) a, Chl b, total Chl, carotenoid (Car), and the ratio Chl a/b in the pine needles were in the following order: T1 > T2 > T3. Compared with the control, the contents of flavonoids and epicuticular wax significantly decreased in all levels of supplementary UV-B radiations (p<0.05). Moreover, the contents of hydrogen peroxide (H2O2) and MDA significantly increased with the enhanced UV-B radiations (p<0.05). Korean pine can increase the catalase, ascorbate peroxidase, and superoxide dismutase activities to prevent oxidative stress by supplementary UV-B radiation. However, its defence mechanism is not efficient enough to prevent UV-Binduced damage.  相似文献   

8.
Nedunchezhian  N.  Muthuchelian  K.  Bertamini  M. 《Photosynthetica》2000,38(4):607-614
Changes in various components of photosynthetic apparatus during the 6-d dark incubation at 25 °C of detached control and DCMU-treated Triticum aestivum L. leaves were examined. The rate of photosystem 2 (PS2) activity was decreased with increase of the time of dark incubation in control leaves. In contrast to this, DCMU-treated leaves demonstrated high stability by slowing down the inactivation processes. Diphenyl carbazide and NH2OH restored the PS2 activity more in control leaves than in DCMU-treated leaves. Mn2+ failed to restore the PS2 activity in both control and DCMU-treated samples. Similar results were obtained when Fv/Fm was evaluated by chlorophyll fluorescence measurements. The marked loss of PS2 activity in dark incubated control leaves was primarily due to the loss of D1, 33, and 23 kDa extrinsic polypeptides and 28-25 kDa LHCP2 polypeptides.  相似文献   

9.
Alteration in the photosynthetic apparatus of clusterbean (Cyamopsis tetraganoloba) cotyledons owing to UV-B irradiation in the absence or presence of UV-A radiation (UV-A + UV-B) during steady phase of its growth has been studied. UV-B radiation induces a decline in the photosynthetic pigments content and O2 evolution along with a modification in the absorption spectra of chloroplasts. UV-A + UV-B irradiation moderately reverses these changes. The partial restoration of FV/FM value and other fluorescence transient parameters in UV-A + UV-B treated sample compared to that of UV-B treated one suggest that UV-A helps in developing a protective pathway against UV-B-induced impairment. UV-B-mediated alteration in S state transition of Mn cluster associated with oxygen evolving complex, as appeared from TL glow curves, is retrieved by UV-A radiation and Car is considered to negotiate against UV-B-induced damage of photosynthetic apparatus.  相似文献   

10.
Alterations in photosynthetic capacity of primary leaves of wheat seedlings in response to ultraviolet-B (UV-B; 280–320 nm; 60 μmol m−2 s−1) exposure alone and in combination with photosynthetically active radiation (PAR; 400–800 nm; 200 μmol m−2 s−1) during different phases of leaf growth and development were assessed. UV-B exposure resulted in a phase-dependent differential loss in photosynthetic pigments, photochemical potential, photosystem 2 (PS2) quantum yield, and in vivo O2 evolution. UV-B exposure induced maximum damage to the photosynthetic apparatus during senescence phase of development. The damages were partially alleviated when UV-B exposure was accompanied by PAR. UV-B induced an enhancement in accumulation of flavonoids during all phases of development while it caused a decline in anthocyanin content during senescence. The differential changes in these parameters demonstrated the adaptation ability of leaves to UV-B stress during all phases of development and the ability was modified in UV-B+ PAR exposed samples.  相似文献   

11.
The effect of low doses of UV-A (320–400 nm) and UV-B (280–320 nm) radiation on photosynthetic activities inPhaseolus mungo L. was investigated under field condition. Supplementation of UV-A enhanced the synthesis of chlorophyll and carotenoids than the UV-B supplemented plants. Significant increase was seen in the concentration of UV-B absorbing compounds of UV-B treated plants. Increase of PS 2 activity in UV-A treated plants was seen. Changes in photosynthetic activity were measured in terms of PS 2 mediated O2 evolution and Chl a fluorescence.  相似文献   

12.
Enhanced ultraviolet-B radiation (UV-B, 280?C320?nm) is recognized as one of the environmental stress factors that cannot be neglected. Jasmonic acid (JA) is an important signaling molecule in a plant??s defense against biotic and abiotic stresses. To determine the role of exogenous JA in the resistance of wheat to stress from UV-B radiation, wheat seedlings were exposed to 0.9?kJ?m?2?h?1 UV-B radiation for 12?h after pretreatment with 1 and 2.5?mM JA, and the activity of antioxidant enzymes, the level of malondialdehyde (MDA), the content of UV-B absorbing compounds, photosynthetic pigments, and proline and chlorophyll fluorescence parameters were measured. The results of two-way ANOVA illustrated that the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), MDA level, anthocyanin and carotenoid (Car) content, and almost all chlorophyll fluorescence parameters were significantly affected by UV-B, JA, and UV-B?×?JA (P?<?0.05) [the maximal efficiency of photosystem II photochemistry (F v/F m) was not affected significantly by UV-B radiation]. Duncan??s multiple-range tests demonstrated that UV-B stress induced a significant reduction in plant photosystem II (PSII) function and SOD activity and an increased level of membrane lipid peroxidation, indicative of the deleterious effect of UV-B radiation on wheat. JA pretreatment obviously mitigated the detrimental effect of UV-B on PSII function by increasing F v/F m, reaction centers?? excitation energy capture efficiency (F v??/F m??), effective photosystem II quantum yield (??PSII), and photosynthetic electron transport rate (ETR), and by decreasing nonphotochemical quenching (NPQ) of wheat seedlings. Moreover, the activity of SOD and the content of proline and anthocyanin were provoked by exogenous JA. However, the MDA level was increased and Car content was decreased by exogenous JA with or without the presence of supplementary UV-B, whereas the contents of chlorophyll and flavonoids and related phenolics were not affected by exogenous JA. Meanwhile, exogenous JA resulted in a decrease of CAT and POD activities under UV-B radiation stress. These results partly confirm the hypothesis that exogenous JA could counteract the negative effects of UV-B stress on wheat seedlings to some extent.  相似文献   

13.
The photosynthetic performance of Microcystis aeruginosa FACHB 854 during the process of UV-B exposure and its subsequent recovery under photosynthetic active radiation (PAR) was investigated in the present study. Eight hours UV-B radiation (3.15 W m−2) stimulated the increase of photosynthetic pigments content at the early stage of UV-B exposure followed by a significant decline. It suggested that UV-B damage was not an immediate process, and there existed a dynamic balance between damage and adaptation in the exposed cells. Short-term UV-B exposure severely inhibited the photosynthetic capability, but it could restore quickly after being transferred to PAR. Further investigations revealed that the PS II of M. aeruginosa FACHB 854 was more sensitive to UV-B exposure than PS I, and the oxygen-evolving complex of PS II was an important damage target of UV-B. The inhibition of photosynthetic performance caused by UV-B could be recovered to 90.9% of pretreated samples after 20 h exposure at low PAR, but it could not be recovered in the dark as well as under low PAR in the presence of Chloromycetin. It can be concluded that PAR and de novo protein synthesis were essential for the recovery of UV-B-damaged photosynthetic apparatus.  相似文献   

14.
Yu  Hua  Ong  Bee-Lian 《Photosynthetica》2001,38(3):477-479
The photosynthetic and growth responses of A. mangium to different photosynthetic photon flux density (PPFD) during early seedling establishment (36 d after sowing) were investigated. Shade-grown A. mangium seedlings exhibited lower chlorophyll (Chl) a/b ratio, higher Chl and carotenoid (Car) contents, and higher total Chl/Car ratio than sun-grown seedlings. Sun-grown seedlings showed significantly higher photosynthetic capacity and total plant dry mass. High PPFD was crucial for the successful early establishment and robust growth of A. mangium seedlings.  相似文献   

15.
The changes in climate can result in several environmental stress factors. Among these, ultraviolet- B (UV-B) and water-deficit have serious detrimental effects on plants at the physiological, morphological, and biochemical levels. Biological soil crusts (BSCs), formed by an association between soil particles and photosynthetic algae, cyanobacteria, lichens, and mosses in varying proportions, are a key functional feature of arid and semi-arid areas. In this study, Bryum argenteum, isolated from BSCs found in the Tengger Desert, China, was subjected to UV-B and water-deficit, singly and in combination, in a greenhouse for 10 days. The treatments consisted of four UV-B levels (2.75, 3.08, 3.25, and 3.41 W/m2) and two water application levels (well-watered and water-deficit). UV-B treatment and water-deficit singly caused a significant decrease in chlorophyll (Chl) fluorescence parameters, carotenoid (Car), total flavonoid contents, and a significant increase in MDA content. The combined application of UV-B and water-deficit produced significantly higher Chl fluorescence parameters, Chl, Car and total flavonoid contents, but reduced MDA content. These results suggest that water-deficit alleviates the negative effects on B. argenteum caused by enhanced UV-B radiation. Our results provide novel insights into understanding the relationships between BSCs and environmental factors, and supply a theoretical foundation for BSC assessment and protection in arid and semi-arid regions.  相似文献   

16.
Pepper (Capsicum annuum L.) plants were sprayed with salicylic acid (SA) and treated with ultraviolet radiation UV-A (320–390 nm), UV-B (312 nm), and UV-C (254 nm) of 6.1, 5.8, and 5.7 W m−2, respectively. UV significantly reduced contents of chlorophyll (Chl) a and b, and carotenoids (Car). SA treatment moderated Chl and Car reduction in plants treated with UV-B and UV-C. The quantity of antocyanins, flavonoids, rutin, and UV-absorbing compounds in plants that were treated with UV-B, UV-C, and SA were significantly increased. Foliar spray of SA counteracted the UV effects on pepper.  相似文献   

17.
The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms. Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems.  相似文献   

18.
Net photosynthetic rate of yellow upper leaves (UL) of Ligustrum vicaryi was slightly, but not significantly higher than that of green lower leaves (LL). Diurnally, maximum photochemical efficiency of photosystem 2, PS2 (Fv/Fm) of LL did not significantly decline but the UL showed fairly great daily variations. Yield of PS2 of UL showed an enantiomorphous variation to the photosynthetically active radiation and was significantly lower than in the LL. Unlike Fv/Fm, the efficiency of energy conversion in PS2 and both non-photosynthetic and photosynthetic quenching did not differ in UL and LL. Significant differences between UL and LL were found in contents of chlorophyll (Chl) a, b, and carotenoids (Car) and ratios of Chl a/b, Chl b/Chl (a+b), and Car/Chl (a+b). Leaf colour dichotocarpism in L. vicaryi was mainly caused by different photon utilization; sunflecks affected the LL.  相似文献   

19.
为了解竹柏(Podocarpus nagi)的光合特性,以3 a生全绿叶和花叶竹柏为材料,测定其光合色素含量和气体交换参数。结果表明,全绿叶竹柏叶片的叶绿素a、叶绿素b、类胡萝卜素、叶绿素a+b、叶绿素a/b和叶绿素a+b/类胡萝卜素均显著高于花叶竹柏;全绿叶竹柏叶片的初始量子效率、最大光合速率和暗呼吸速率均显著高于花叶,而光饱和点和光补偿点均显著低于花叶;全绿叶竹柏叶片的初始羧化效率、光合速率、CO2饱和点和光呼吸速率均高于花叶,而CO2补偿点低于花叶。2种颜色叶片的气孔导度、蒸腾速率和水分利用效率均随着光合有效辐射的增大而增大,且均表现为全绿叶花叶,而胞间CO2浓度则相反,表现为花叶全绿叶。因此,全绿叶竹柏利用弱光的能力强于花叶竹柏,而花叶竹柏利用强光的能力更强,在园林绿化配置中,可根据2种颜色叶片的光合特性合理配置。  相似文献   

20.
Krishna  K. Bala  Joshi  M.K.  Vani  B.  Mohanty  P. 《Photosynthetica》1999,36(1-2):199-212
We studied the development of chloroplasts from etioplasts in the cotyledonary leaves of 4-d-old dark-grown cucumber (Cucumis sativus) seedlings after irradiation (20 μmol m-2 s-1). Upon irradiation, the triggering of chlorophyll (Chl) synthesis and accumulation showed a relatively short lag phase. The irradiation of etiolated seedlings initiated the synthesis of apoproteins of pigment-protein complexes. While Chl-protein 2 (CP2) was detected at 6 h after irradiation, CP1 only after 29 h. The appearance and accumulation of some of the apoproteins were monitored by Western-blotting. LHC2 apoprotein was detected after a 6 h-irradiation. The amounts of D1 protein of photosystem (PS) 2 and PsaA/B protein of PS1 were quantitated by ELISA. Further, the thylakoid membrane function during this time period in terms of PS1- and PS2-mediated electron transfer activity and intersystem electron pool size were analyzed. While PS1 activity was detected after 4 h, PS2-mediated O2 evolution was detected only after a 17 h-irradiation. Fv/Fm value of Chl a fluorescence measurements indicated that the photochemical efficiency of these leaves reached its maximum after 29 h of irradiation. The intersystem pool size of cotyledonary leaves was equivalent to that of the control cotyledonary leaves grown for 25 h under continuous irradiation. Thus etioplasts develop into fully functional chloroplasts after approximately 25 h when 4 d-dark grown cucumber seedlings are continuously moderately irradiated. The development of photosynthetic electron transport chain seems to be limited in time at the level of PS2, possibly at the donor side. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号