首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

2.
Glutamate dehydrogenase (GDH) activity, protein and total nitrogen contents in the secondary leaves of maize(Zea mays L. cv. Ganga Safed-2) seedlings increased during early seedling growth and then declined after reaching a peak level at either 10 d (GDH) or 12 d (metabolites). While the effect of kinetin on enzyme activity was statistically insignificant, benzyladenine supplied with nutrient solution increased GDH activity in secondary leaves of both 10-d as well as 14-d seedlings. However, both growth regulators increased the contents of total soluble proteins, total nitrogen, chlorophyll(a+b) and carotenoids in both 10 and 14-d old leaves.  相似文献   

3.
4.
Mustard (Brassica juncea Coss cv. T-59 ‘Varuna’) seedlings pretreated with gibberellic acid (GA) and kinetin (KiN) were grown in light. In vivo nitrate reductase (NR) activity was estimated and effect of tungsten on light-induced and NO 3 su− -induced NR activity was investigated. Different concentrations of GA did not show any effect on induction of light-induced NR; addition of nitrate promoted in vivo NR activity but no concentration effect of GA was evident. Light-induced NR was promoted by KiN and like in GA treatment, addition of nitrate increased NR activity. Addition of Na-tungstate inhibited NO 3 induced NR while light-induced NR was not much affected in both GA and KiN treated seedlings. The two forms of NRs were further characterized by studying the decay kinetics using Na-tungstate. In light-induced NR, tungstate did not affect NR activity up to 11 h, while at later periods, a slight decay was observed. On the other hand, NO 3 -induced NR activity increased up to 4 h and subsequently a rapid fall was observed. It was therefore apparent that light-induced NR had a very low turnover rate as compared to NO 3 -induced NR. These results further support the earlier conclusion that in mustard seedlings two distinct types of NR enzyme exist and that nitrate requirement for NR induction is not absolute.  相似文献   

5.
张毅  石玉  胡晓辉  邹志荣  曹凯  张浩 《生态学杂志》2013,24(5):1401-1408
采用水培方法,研究了盐碱与Spd处理对两品种番茄(中杂9号和金棚朝冠)幼苗氮代谢及主要矿质元素含量的影响.结果表明: 盐碱胁迫下,番茄幼苗干生物量显著减少,植株生长受到抑制;叶片和根系硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)活性及硝态氮(NO3--N)、全N、全K、Ca2+、Mg2+含量显著降低,铵态氮(NH4+-N)、Na+含量显著增加;两品种叶片及中杂9号根系谷氨酸脱氢酶(GDH)活性显著升高,金棚朝冠根系GDH活性变化不显著;叶片全P含量显著降低,根系全P含量显著升高(金棚朝冠)或无显著变化(中杂9号).Spd处理通过增强NR、GS、GOGAT活性提高了植株对NH4+的同化利用率,有效缓解了盐碱胁迫导致的氮代谢紊乱,进而促进不同器官对P、K、Ca、Mg、Na的吸收、释放或转运,在一定程度上维持了各元素之间的相对平衡,从而增强植株对逆境的适应能力.此外,盐碱对中杂9号的抑制作用及外源Spd对其氮代谢紊乱和营养失衡的缓解作用高于金棚朝冠.  相似文献   

6.
The objectives of this study were to determine the effect of light enhancement and hastened reproductive development on nitrogen and dry matter accumulation by field-grown soybean (Glycine max [L.] Merr.). The impacts of photosynthate supply and reproductive development on change in the season-long profiles of in vivo leaf nitrate reductase (NR) activity and root nodule acetylene reduction (AR) activity were evaluated.

Light enhancement resulted in significant increases in dry matter accumulation, root nodule fresh weight and AR activity. Seed yield was increased in both light enhanced treatments in 1978 and in one in 1979.

Hastened flowering and seed development was accomplished through photoperiod manipulation within a single genotype. Seasonal decline in leaf NR activity was most rapid in plants entering reproductive development early. An early increase in root nodule fresh weight and AR activity was also observed in response to this treatment and was followed similarly by early decline.

The addition of high levels of soil-applied nitrogen increased leaf NR activity and delayed late season decline in NR activity for both control and early reproductive plants. Nitrate supply was therefore implicated as limiting to leaf NR activity during the decline associated with flowering and early seed development. A limited additional increase in leaf NR activity was observed in response to light enhancement plus soil-applied nitrogen. As no significant increase in leaf NR activity was observed in response to light enhancement alone, leaf nitrate supply was further implicated as more limiting to leaf NR activity than was photosynthate supply during flowering and early seed development.

  相似文献   

7.
The relation of the in vivo nitrate reductase (NR) activityto growth period was studied in the nodules and the leaves ofthe summer moong (Vigna radiata). The maximum NR activity wasobserved 31 days after sowing (DAS) in the leaves and 28 DASin the case of the nodules. In a pot experiment, the effectof the various nitrogen concentrations, namely 0, 3, 6, 9 and12 mg kg–1 was studied on NR activity at three growthstages. The maximum NR activity was observed at 6 mg kg–1N during the pre-flowering stage (26 DAS). Though the noduleshave higher NR activity, its expression was limited by substrateavailability. The NR activity in the leaf could be used as anindex of NR activity in the nodules. Nitrate reductase, nitrogen, nitrate, moong, Vigna radiata  相似文献   

8.
Mutant plants defective in the assimilation of nitrate can be selected by their resistance to the herbicide chlorate. In Arabidopsis thaliana, mutations at any one of nine distinct loci confer chlorate resistance. Only one of the CHL genes, CHL3, has been shown genetically to be a nitrate reductase (NR) structural gene (NIA2) even though two NR genes (NIA1 and NIA2) have been cloned from the Arabidopsis genome. Plants in which the NIA2 gene has been deleted retain only 10% of the wildtype shoot NR activity and grow normally with nitrate as the sole nitrogen source. Using mutagenized seeds from the NIA2 deletion mutant and a modified chlorate selection protocol, we have identified the first mutation in the NIA1 NR structural gene. nia1, nia2 double mutants have only 0.5% of wild-type shoot NR activity and display very poor growth on media with nitrate as the only form of nitrogen. The nial-1 mutation is a single nucleotide substitution that converts an alanine to a threonine in a highly conserved region of the molybdenum cofactor-binding domain of the NR protein. These results show that the NIA1 gene encodes a functional NR protein that contributes to the assimilation of nitrate in Arabidopsis.  相似文献   

9.
Nitrate and total nitrogen contents, and nitrate reductase (NR) activity of the excised maize roots in buffered or unbuffered nitrate solution (at pH 6.5 or 4.5) as affected by putrescine (PUT), abscisic acid (ABA) and salicylic acid (SA) were investigated. In unbufferred solution, the NR activity was lower at pH 4.5 as compared to that at pH 6.5, but in bufferred solution the activity was higher at lower pH. Supply of 100 µM PUT or 500 µM SA, promoted NR activity and 50 µM ABA inhibited the activity at pH 6.5. However, at pH 4.5, PUT and SA inhibited NR activity and ABA had no effect. In most cases, the increase in NR activity was positively correlated with total organic nitrogen and a negatively with nitrate content. A reverse situation was found when NR activity was inhibited by the growth regulators.  相似文献   

10.
In vivo nitrate reductase (NR) activity declined gradually either in absence or presence of Mg2+ In dark grown plants of spinach. The increased sensitivity of the extracted NR from the dark grown plants to Mg2+ and ATP is indicative of the post-translational modification as one of the mechanisms to control NR activity. The response of extracted NR was gradual and not instantaneous suggesting a complex interplay of NR regulation, as the dark acclimatized plants when exposed to light caused significant nitrate reduction within 15 min of light exposures even in the presence of Mg2+ and ATP.  相似文献   

11.
In the present work, the effect of polyamines (PAs) on nitrate reductase (NR) activity was studied in wheat leaves exposed to exogenously added PAs while assessing the nitric oxide (NO) involvement in the regulation of the enzyme activity. A biphasic response was observed along the time of treatment using 0.1 mM of putrescine (Put), spermidine (Spd) or spermine (Spm). At 3 h, Spd and Spm significantly reduced NR activity by 29 or 35%, respectively, whereas at 6 h, the activity of the enzyme decreased by an average of 25%. At 21 h, Put increased NR activity by 63%, while Spd and Spm elevated the enzyme activity by 114%. NR activity, that was reduced by 0.1 mM Spm at 3 and 6 h, returned almost to control values when c-PTIO (an NO scavenger) was used, confirming that NO was involved in the inhibition of NR activity. Nitric oxide was also mediating the PA-increase of the enzyme activity at longer incubation times, evidenced when the raise in NR activity produced by 0.1 mM Spm at the longest incubation time returned to the value of the control in the presence of cPTIO. Neither the protein expression nor the nitrate content were modified by PAs treatments. The involvement of PAs and NO in the regulation of NR activity is discussed.  相似文献   

12.
Nitrate reductase (NR) activity of bothPisum sativum L. cv. Bonneville andTriticum aestivum L. cv. Sonalika seedlings was influenced by the phytochrome system. Short durations of “red” irradiation (R) increased extractable levels of NR whereas subsequent short “far-red” irradiation (FR) partially inhibited the R modulated increases. Qualitatively, a negative correlation existed between thein vitro NR activities andin vivo phytochrome levels inPisum. “Blue” irradiation (B) also increased extractable levels of NR inTriticum. A partial action spectrum study made by exposing excised etiolated leaves ofTriticum and shoot apices ofPisum revealed a maximum increase in extractable NR activities and tissue nitrate level (inTriticum) at 656 nm. A partial action spectrum for the extracted enzyme ofTriticum indicated that at 700 nm the level of activity was increased (as compared to dark controls) more than by R (656 nm), FR (725 nm) or B (425 or 450 nm) irradiation, although all wavelengths used increased NR activity.  相似文献   

13.
Although activity of the enzyme nitrate reductase (NR) can potentially be used to predict the rate of nitrate incorporation in field assemblages of marine phytoplankton, application of this index has met with little success because the relationship between the two rates is not well established under steady-state conditions. To provide a basis for using NR activity measurements, the relationships among NR activity, growth rate, cell composition, and nitrate incorporation rate were examined in cultures of Thalassiosira pseudonana (Hustedt)Hasle and Heimdal, growing a) under steady-state light limitation, b) during transitions between low and high irradiance (15 or 90 μmol quanta.m?2.s?1), and c) under steady-state nitrate limitation. Using a modified assay for NR involving additions of bovine serum albumin to stabilize enzyme activity, NR activity in light-limited cultures was positively and quantitatively related to calculated rates of nitrate incorporation, even in cultures that were apparently starved of selenium. During transitions in irradiance, growth rates acclimated to new conditions within 1 day; through the transition, the relationship between NR activity and nitrate incorporation rate remained quantitative. In nitrate-limited chemostat cultures, NR activity was positively correlated with growth rate and with nitrate incorporation rates, but the relationship was not quantitative. NR activity exceeded nitrate incorporation rates at lower growth rates (<25% of nutrient-replete growth rates), but chemostats operating at such low dilution rates may not represent ecologically relevant conditions for marine diatoms. The strong relationship between NR activity and nitrate incorporation provides support for the idea that NR is rate-limiting for nitrate incorporation or is closely coupled to the rate-limiting step. In an effort to determine a suitable variable for scaling NR activity, relationships between different cell components and growth rate were examined. These relationships differed depending on the limiting factor. For example, under light limitation, cell volume and cell carbon content increased significantly with increased growth rate, while under nitrate limitation cell volume and carbon content decreased as growth rates increased. Despite the differences found between cell composition and growth rate under light and nitrate limitation, the relationships between NR activity scaled to different compositional variables and growth rate did not differ between the limitations. In field situations where cell numbers are not easily determined, scaling NR activity to particulate nitrogen content may be the best alternative. These results establish a strong basis for pursuing NR activity measurements as indices of nitrate incorporation in the field.  相似文献   

14.
Two nitrate reductase (NR) mutants were selected for low nitrate reductase (LNR) activity by in vivo NR microassays of M2 seedlings derived from nitrosomethylurea-mutagenized soybean (Glycine max [L.] Merr. cv Williams) seeds. The mutants (LNR-5 and LNR-6) appeared to have normal nitrate-inducible NR activity. Both mutants, however, showed decreased NR activity in vivo and in vitro compared with the wild-type. In vitro FMNH2-dependent nitrate reduction and Cyt c reductase activity of nitrate-grown plants, and nitrogenous gas evolution during in vivo NR assays of urea-grown plants, were also decreased in the mutants. The latter observation was due to insufficient generation of nitrite substrate, rather than some inherent difference in enzyme between mutant and wild-type plants. When grown on urea, crude extracts of LNR-5 and LNR-6 lines had similar NADPH:NR activities to that of the wild type, but both mutants had very little NADH:NR activity, relative to the wild type. Blue Sepharose columns loaded with NR extract of urea-grown mutants and sequentially eluted with NADPH and NADH yielded a NADPH:NR peak only, while the wild-type yielded both NADPH: and NADH:NR peaks. Activity profiles confirmed the lack of constitutive NADH:NR in the mutants throughout development. The results provide additional support to our claim that wild-type soybean contains three NR isozymes, namely, constitutive NADPH:NR (c1NR), constitutive NADH:NR (c2NR), and nitrate-inducible NR (iNR).  相似文献   

15.
Putrescine (Put), spermidine (Spd), and spermine (Spm) are the major polyamines (PAs) in plant, which are not only involved in the regulation of plant developmental and physiological processes, but also play key roles in modulating the defense response of plants to diverse environmental stresses. In this study, Cucumis sativus L. seedlings were cultivated in nutrient solution and sprayed with three kinds of PAs (Put, Spd, and Spm). The effects of PAs were investigated on excess nitrate stress tolerance of C. sativus by measuring growth and nitrogen (N) metabolism parameters. The contents of NO3-?N, NH4-+N, proline and soluble protein in leaves were increased; while plant height, leaf area, shoot fresh and dry weight, root fresh weight were decreased under 140 mM NO3? treatment for 7 d. In addition, the activities of nitrate reductase (NR), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH) were significantly inhibited under 140 mM NO3? treatment for 7 d. With foliar treatment by 1 mM Spd or Spm under stress treatment, the contents of Spm, Put, and Spd in leaves increased significantly, except that Spm content decreased under Spd treatment. The activities of NR, glutamine synthetase (GS), GOGAT and GDH and plant height, leaf area, shoot fresh and dry weights were significantly increased. The contents of proline and soluble protein in leaves were significantly enhanced. In contrast, the accumulation of NO3-?N and NH4-+N were significantly decreased. However, there were minor differences in activities of N metabolism enzymes and the content of osmotic adjustment substances under 1 mM Put treatment. These findings suggest that 1 mM exogenous Spm or Spd could enhance the capacity of N metabolism, promote growth and increase resistance to high concentrations of NO3?. The ameliorating effect of Spd was the best, and that of Put the worst.  相似文献   

16.
The effect of a range of concentrations of nitrate (NO?3) on the growth rate and nitrate reductase (NR) activity of both young and mature sporophytes of Laminaria digitata (Huds.) Lamour has been studied by means of laboratory batch culture experiments. The growth rate of young sporophytes was found to increase in a hyperbolic fashion with increasing NO?3 availability, with a ks value of 19 μmol·dm?3. The potential in vivo NR activity of these plants (obtained under optimum assay conditions) remained constant over the range of NO?3 concentrations used, while the actual in vivo NR activity (sustained by the internal NO?3 pool within the cell) increased in a similar hyperbolic manner to that shown by the growth rate (ks 20 μmol·dm?3). The changes in the actual in vivo NR activity were consistent with those of the internal NO?3 content of these plants, which also increased with increasing external NO?3 concentration.The NR activity in the blade meristem of the mature sporophytes behaved in a similar manner to that of the entire young plants. In contrast, the potential in vivo NR activity of the old, non-meristematic region of the blades of mature plants (where the maximum NR activities were located) did respond to the external availability of NO?3, being greater in those plants grown in high concentrations of NO?3 than in those in which growth was nitrogen-limited. In addition to this trend, a similar dependence of the ratio of actual : potential NR activity on the degree of nitrogen limitation to that found in the young sporophytes occurred in this region of the blade of mature plants.Pronounced diurnal variations in NR activity, with maximum values in the light period and minimum in the dark, were observed in both field and laboratory populations of L. digitata. The amplitude of these fluctuations appeared to be controlled by the degree of nitrogen limitation experienced, being much greater when growth was light- rather than nitrogen-limited (minimum values 44 and 74% of maximum, respectively).Overall the data indicate that the ratio between the actual : potential in vivo NR activity in L. digitata provides an unambiguous indicator of the state of the nitrogen metabolism within the cells, the interpretation of which, unlike growth rate, is not affected by differences in other culture or environmental conditions. This finding is believed to have important implications for the commercial cultivation of this and other species of macroalgae.  相似文献   

17.
The influence of varying levels of salinity (0, 100, 200 and 400 mM) on the activities of nitrate reductase (NR, E.C. 1.6.6.1), acid phosphatase (ACP, E.C. 3.1.3.2), and alkaline phosphatase (ALP, EC 3.1. 3.1) as well as on nitrate and phosphate uptake and total nitrogen levels in leaves of a true mangrove Bruguiera parviflora was investigated under hydroponic culture conditions. NR activity increased in 100 mM NaCl treated plants, whereas it decreased gradually in 200 and 400 mM treated plants, relative to the controls. Decreased activity of NR by NaCl stress was also accompanied by a decrease in total nitrogen level and nitrate uptake. Decreases in NR activity, nitrate (NO3), and total nitrogen level due to high salinity may be responsible for a decrease in growth and biomass production in this plant. However, salinity caused an increase in both ACP and ALP activity. Activity staining of ACP by native polyacrylamide gel electrophoresis revealed three isoforms: ACP-1, ACP-2, and ACP-3. We observed a preferential enhancement in the ACP-3 isoform by salinity. In order to understand whether the salinity-induced increase in phosphatase activity was due to inhibition in phosphate uptake, we monitored phosphate (Pi) levels in leaves and noted that phosphate levels decreased significantly under salinity. These results suggest that the induction of acid and ALP under salt stress may be due to a phosphorous deficiency.  相似文献   

18.
Summary Various nitrogen compounds were tested for their ability to alleviate the reduced nitrogen requirement of soybean cells growing in defined liquid medium containing nitrate as the alternative nitrogen source. Either l-glutamine, l-alanine, putrescine or NH4 + satisfied this requirement. Addition of l-glutamate resulted in poor growth. Where growth was stimulated, nitrate reductase (NR) activity increased whereas glutamate dehydrogenase activity in the cells showed no such correlation. In all fresh media which supported rapid growth, NR activity first decreased rapidly to a low value. Subsequent dry weight increases occurred concommitantly with an increase in NR activity. When 2,4-dichlorophenoxyacetic acid was omitted from the medium the growth was slow and the NR activity did not increase. During the first 40 h of incubation in medium containing NH4 + plus NO3 - the cells produced a growth-enhancing factor(s). This factor(s) was present in the cells and in the medium and eliminated the requirement for reduced nitrogen.This work was supported by a grant in aid of research from the National Research Council of Canada to one of us (J. K.). NRCC No. 12520  相似文献   

19.
The objectives of this study were to select and initially characterize mutants of soybean (Glycine max L. Merr. cv Williams) with decreased ability to reduce nitrate. Selection involved a chlorate screen of approximately 12,000 seedlings (progeny of mutagenized seed) and subsequent analyses for low nitrate reductase (LNR) activity. Three lines, designated LNR-2, LNR-3, and LNR-4, were selected by this procedure.

In growth chamber studies, the fully expanded first trifoliolate leaf from NO3-grown LNR-2, LNR-3, and LNR-4 plants had approximately 50% of the wild-type NR activity. Leaves from urea-grown LNR-2, LNR-3, and LNR-4 plants had no NR activity while leaves from comparable wild-type plants had considerable activity; the latter activity does not require the presence of NO3 in the nutrient solution for induction and on this basis is tentatively considered as a constitutive enzyme. Summation of constitutive (urea-grown wild-type plants) and inducible (NO3-grown LNR-2, LNR-3, or LNR-4 plants) leaf NR activities approximated activity in leaves of NO3-grown wild-type plants. Root NR activities were comparable in wild-type and mutant plants grown on NO3, and roots of both plant types lacked constitutive NR activity when grown on urea. In both growth chamber- and field-grown plants, oxides of nitrogen [NO(x)] were evolved from young leaves of wild-type plants, but not from leaves of LNR-2 plants, during in vivo NR assays. Analysis of leaves from different canopy locations showed that constitutive NR activity was confined to the youngest three fully expanded leaves of the wild-type plant and, therefore, on a total plant canopy basis, the NR activity of LNR-2 plants was approximately 75% that of wild-type plants. It is concluded that: (a) the NR activity in leaves of NO3-grown wild-type plants includes both constitutive and inducible activity; (b) the missing NR activity in LNR-2, LNR-3, and LNR-4 leaves is the constitutive component; and (c) the constitutive NR activity is associated with NO(x) evolution and occurs only in physiologically young leaves.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号