首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli K30 produces a thermostable group I capsular polysaccharide. Two classes of mutants were isolated with defects in the synthesis or expression of capsule. The most common mutant phenotype was acapsular (K-), with no K-antigen synthesized. A second class of mutants, termed Ki or intermediate forms, produced colonies which were indistinguishable from those of acapsular forms yet K-antigenicity was expressed. Previous studies had demonstrated that E. coli strains that produce K30 antigen synthesize a lipopolysaccharide (LPS) fraction that is recognised by monoclonal antibodies against the K30 antigen. Synthesis of this LPS fraction was not affected in Ki forms. The results of morphological examination, LPS analysis and phage sensitivity studies are consistent with the interpretation that the defect in Ki strains results from an inability to polymerize the K30 antigen. Using plasmid pULB113 (RP4::mini-Mu), mutations resulting in both K- and Ki phenotypes were localized near the his region of the chromosome.  相似文献   

2.
3.
Monoclonal antibodies were produced against the capsular antigen of Escherichia coli serotype K(A)30, using a mouse hybridoma system. The antibodies also recognised the chemically identical capsular polysaccharide produced by Klebsiella K20. Chemical modification of the K30 polysaccharide indicated that the glucuronic acid residues found in the E. coli K30 capsular antigen were important in the epitope recognised by these antibodies. Use of the antibodies as molecular probes revealed the presence of two discrete forms of the K30 antigen. One form was comprised of high molecular weight polysaccharide, present as a surface capsular layer. The second form of the antigen was of low molecular weight and was associated with lipopolysaccharide fractions from cell surface polysaccharide extracts. Separation of lipopolysaccharide fractions using gel chromatography in the presence of detergent showed that the low molecular weight K-antigenic fraction comigrated with a lipopolysaccharide lipid A core fraction present in encapsulated E. coli K30 bacteria but absent in acapsular mutants.  相似文献   

4.
Escherichia coli serotype O9:K(A)30 and Klebsiella O1:K20 produce thermostable capsular polysaccharides or K antigens, which are chemically and serologically indistinguishable. Plasmid pULB113 (RP4::mini-Mu) has been used to mediate chromosomal transfer from E. coli O9:K30 and Klebsiella O1:K20 to a multiply marked, unencapsulated, E. coli K12 recipient. Analysis of the cell surface antigens of the transconjugants confirmed previous reports that the genetic determinants for the E. coli K(A) antigens are located near the his and rfb (O antigen) loci on the E. coli linkage map. The Klebsiella K20 capsule genes were also found to be in close proximity to the his and rfb loci. Electron microscopy revealed significant differences in the structural organization of capsular polysaccharides in these two microorganisms and the morphological differences were also readily apparent in transconjugants expressing the respective K antigens. These results are consistent with the interpretation that at least some of the organizational properties of capsular polysaccharides may be genetically determined, rather than being a function of the outer membrane to which the capsular polysaccharides are ultimately attached.  相似文献   

5.
6.
Capsules are well-studied components of the bacterial surface that modulate interactions between the cell and its environment. Generally composed of polysaccharide, they are key virulence determinants in invasive infections in humans and other animals. Genetic determinants involved in capsule expression have been isolated from a number of organisms, but perhaps the best characterized is the kps cluster of Escherichia coli K1. In this review, the current understanding of the functions of the kps gene products is summarized. Further, a proposed mechanistic model for capsule expression is presented and discussed. The model is based on the premise that the numerous components of the kps cluster form a hetero-oligomeric complex responsible for synthesis and concurrent translocation of the capsular polysialic acid through sites of inner and outer membrane fusion. We view the ATP-binding cassette (ABC) transporter, KpsMT, to be central to the functioning of the complex, interacting with the biosynthetic apparatus as well as the extracytoplasmic components of the cluster to co-ordinate synthesis and translocation. The model provides the basis for additional experimentation and reflects emerging similarities among systems responsible for macromolecular export in Gram- negative bacteria.  相似文献   

7.
The structure of the capsular polysaccharide from Escherichia coli O9:K28(A):H- (K28 antigen) has been determined by using the techniques of methylation, periodate oxidation, and partial hydrolysis. N.m.r. spectroscopy (1H and 13C) was used to establish the nature of the anomeric linkages. O-Acetyl groups were determined spectrophotometrically and were located using methyl vinyl ether as a protective reagent. The polysaccharide is comprised of repeating units of the tetrasaccharide shown (three-plus-one type) with 70% of the fucosyl residues carrying an O-acetyl substituent. (formula; see text) This structure resembles that of E. coli K27 and has the structural pattern of Klebsiella K54 polysaccharide.  相似文献   

8.
The structure of the capsular polysaccharide from E. coli O9:K37 (A 84a) has been studied, using methylation analysis, Smith degradation, and graded acid hydrolysis. The configurations at the anomeric centres were assigned by 1H-n.m.r. spectroscopy of the polysaccharide and its derivatives and oligosaccharide fragments. The polysaccharide has the following trisaccharide repeating-unit which is unique in the E. coli series of capsular polysaccharides in possessing a 1-carboxyethylidene group as the sole acidic function. (Formula: see text) E. coli capsular polysaccharides have been classified into seventy-four serotypes. The structures of about twenty of these polysaccharides have been elucidated, one of which, K29, has been reported to contain a 1-carboxyethylidene group. In continuation of a programme aimed at establishing the structural basis for the serology and immunochemistry of the E. coli capsular antigens, we now report on the structure of the capsular polysaccharide from E. coli O9:K37.  相似文献   

9.
Escherichia coli K1 is responsible for 80% of E. coli neonatal meningitis and is a common pathogen in urinary tract infections. Bacteria of this serotype are encapsulated with the alpha(2-8)-polysialic acid NeuNAc(alpha2-8), common to several bacterial pathogens. The gene cluster encoding the pathway for synthesis of this polymer is organized into three regions: (i) kpsSCUDEF, (ii) neuDBACES, and (iii) kpsMT. The K1 polysialyltransferase, NeuS, cannot synthesize polysialic acid de novo without other products of the gene cluster. Membranes isolated from strains having the entire K1 gene cluster can synthesize polysialic acid de novo. We designed a series of plasmid constructs containing fragments of regions 1 and 2 in two compatible vectors to determine the minimum number of gene products required for de novo synthesis of the polysialic acid from CMP-NeuNAc in K1 E. coli. We measured the ability of the various combinations of region 1 and 2 fragments to restore polysialyltransferase activity in vitro in the absence of exogenously added polysaccharide acceptor. The products of region 2 genes neuDBACES alone were not sufficient to support de novo synthesis of polysialic acid in vitro. Only membrane fractions harboring NeuES and KpsCS could form sialic polymer in the absence of exogenous acceptor at the concentrations formed by wild-type E. coli K1 membranes. Membrane fractions harboring NeuES and KpsC together could form small quantities of the sialic polymer de novo.  相似文献   

10.
The capsular polysaccharide of the bacterium Escherichia coli O9:K32(A):H19 was analyzed using chemical methods (hydrolysis, sequential Smith degradation, methylation analysis) together with 1H- and 13C-n.m.r. spectroscopy. 13C-N.m.r. spectroscopy and chemical analyses indicated that the K32 polysaccharide is composed of equimolar proportions of glucose, galactose, rhamnose, and glucuronic acid, and carries O-acetyl groups. 1H-N.m.r. analysis of native K32 polysaccharide revealed five resonances in the anomeric region (delta 5.52, 5.16, 5.12, 5.02, and 4.73) and the presence of an acetyl group (delta 2.18). O-Deacetylation of the polysaccharide resulted in the loss of the resonance at delta 2.18 and one of the resonances (delta 5.52) in the anomeric region. The "extra" anomeric resonance in the 1H-n.m.r. spectrum of the native K32 polymer was assigned to H-2 of rhamnose, which experiences a large downfield shift when the 2-position is O-acetylated. This was confirmed by a 2D-COSY n.m.r. experiment and studies of model compounds. The K32 capsular polysaccharide is of the "2 + 2" type, comprised of the following repeating unit: (sequence; see text) This structure is identical to that of Klebsiella K55 capsular polysaccharide.  相似文献   

11.
Abstract Coliphage K30, a bacteriophage specific for strains bearing the Escherichia coli serotype K30 capsular polysaccharide, produced plaques surrounded by extensive haloes, a characteristic of phage which produce capsule depolymerase (glycanase) enzymes. Klebsiella K20, a strain producing a capsular polysaccharide chemically identical to that of E. coli K30, was not lysed by coliphage K30, although the bacteriophage encoded glycanase enzyme did degrade the K20 polysaccharide. Morphologically, coliphage K30 belonged to Bradley group C. The coliphage K30 particle comprised 20 structural polypeptides which varied from 9.5–136 kDa and genomic DNA of 38.7 ± 1.0 kb.  相似文献   

12.
13.
Abstract The genes directing the expression of group II capsules in Escherichia coli are organized into three regions. The central region 2 is type specific and thought to determine the synthesis of the respective polysaccharide, whilst the flanking regions 1 and 3 are common to all group II gene clusters and direct the surface expression of the capsular polysaccharide. In this communication we analyze the involvement of region 1 and 3 genes in the synthesis of the capsular KS polysaccharide. Recombinant E. coli strains harboring all KS specific region 2 genes and having various combinations of region 1 and 3 gene were studied using immunoelectron microscopy. Membranes from these bacteria were incubated with UDP[14C]GlcA and UDPG1cNAc in the absence or presence of KS polysaccharide as an exogenous acceptor. It was found that recombinant strains with only gene region 2 did not produce the K5 polysaccharide. Membranes of such strains did not synthesize the polymer and did not elongate K5 polysaccharide added as an exogenous acceptor. An involvement of genes from region 1 (notably kps C and kps S) and from region 3 (notably kps T) in the K5 polysaccharide synthesis was apparent and is discussed.  相似文献   

14.
The primary structure of the K12 antigenic capsular polysaccharide (K12 antigen) of Escherichia coli O4:K12:H- was elucidated by composition, nuclear magnetic resonance spectroscopy, methylation, periodate oxidation and oligosaccharide analysis. The polysaccharide consists of repeating trisaccharide alpha-rhamnosyl-1,2-alpha-rhamnosyl-1,5-dOclA units (dOclA = 2-keto-3-deoxy-D-manno-octonic acid) which are joined through beta-2,3-linkages. About 50% of the dOclA units are O-acetylated at C7 or C8. The sequence of acetylated and non-acetylated dOclA residues is not known. As had been reported before, the polysaccharide is linked to a phosphatidic acid at the reducing end (dOclA) via a phosphodiester bridge. The serologically specific part of the K12 antigen is its polysaccharide moiety.  相似文献   

15.
In Escherichia coli K-12, RcsC and RcsB are thought to act as the sensor and effector components, respectively, of a two-component regulatory system which regulates expression of the slime polysaccharide colanic acid (V. Stout and S. Gottesman, J. Bacteriol. 172:659-669, 1990). Here, we report the cloning and DNA sequence of a 4.3-kb region containing rcsC and rcsB from E. coli O9:K30:H12. This strain does not produce colanic acid but does synthesize a K30 (group I) capsular polysaccharide. The rcsB gene from E. coli K30 (rcsBK30) is identical to the rcsB gene from E. coli K-12 (rcsBK-12). rcsCK30 has 16 nucleotide changes, resulting in six amino acid changes in the predicted protein. To examine the function of the rcs regulatory system in expression of the K30 capsular polysaccharide, chromosomal insertion mutations were constructed in E. coli O9:K30:H12 to independently inactivate rcsBK30 and the auxiliary positive regulator rcsAK30. Strains with these mutations maintained wild-type levels of K30 capsular polysaccharide expression and still produced a K30 capsule, indicating that the rcs system is not essential for expression of low levels of the group I capsular polysaccharide in lon+ E. coli K30. However, K30 synthesis is increased by introduction of a multicopy plasmid carrying rcsBK30. K30 polysaccharide expression is also markedly elevated in an rcsBK30-dependent fashion by a mutation in rcsCK30, suggesting that the rcs system is involved in high levels of synthesis. To determine whether the involvement of the rcs system in E. coli K30 expression is typical of group I (K antigen) capsules, multicopy rcsBK30 was introduced into 22 additional strains with structurally different group I capsules. All showed an increase in mucoid phenotype, and the polysaccharides produced in the presence and absence of multicopy rcsBK30 were examined. It is has been suggested that E. coli strains with group I capsules can be subdivided based on K antigen structure. For the first time, we show that strains with group I capsules can also be subdivided by the ability to produce colanic acid. Group IA contains capsular polysaccharides (including K30) with repeating-unit structures lacking amino sugars, and expression of group IA capsular polysaccharides is increased by multicopy rcsBK30. Group IB capsular polysaccharides all contain amino sugars. In group IB strains, multicopy rcsBK30 activates synthesis of colanic acid.  相似文献   

16.
The nucleotide sequence of region 1 of the K5 antigen gene cluster of Escherichia coli was determined. This region is postulated to encode functions which, at least in part, participate in translocation of polysaccharide across the periplasmic space and onto the cell surface. Analysis of the nucleotide sequence revealed five genes that encode proteins with predicted molecular masses of 75.7, 60.5, 44, 43, and 27 kDa. The 27-kDa protein was 70.7% homologous to the CMP-2-keto-3-deoxyoctulosonic acid synthetase enzyme encoded by the E. coli kdsB gene, indicating the presence of a structural gene for a similar enzyme within the region 1 operon. The 43-kDa protein was homologous to both the Ctrb and BexC proteins encoded by the Neisseria meningitidis and Haemophilus influenzae capsule gene clusters, respectively, indicating common stages in the expression of capsules in these gram-negative bacteria. However, no homology was detected between the 75.7, 60.5-, and 44-kDa proteins and any of the proteins so far described for the H. influenzae and N. meningitidis capsule gene clusters.  相似文献   

17.
Abstract We developed a quick typing method for Borrelia burgdorferi sensu lato strains using a fla gene-based PCR assay, followed by dot blot hybridization with non-radioactive species-specific probes. Thirty-six out of 46 strains belonged to one of the four described species ( B. burgdorferi sensu stricto n = 11, B. garinii n = 11, B. afzelii n = 9 and B. japonica n = 5) and hybridized with its own species-specific probe. Among the 10 remaining American strains, two new additional genomic groups were identified. This finding was confirmed by direct sequenching of the fla gene-derived amplicons and whole DNA hybridization.  相似文献   

18.
Methylation, 1H nuclear magnetic resonance, and bacteriophage degradation results indicate that the Escherichia coli serotype K30 capsular polysaccharide consists of leads to 2)-alpha-D-Manp-(1 leads to 3)-beta-D-Galp-(1 leads to chains carrying beta-D-GlcUAp-(1 leads to 3)-alpha-D-Galp-(1 leads to branches at position 3 of the mannoses.  相似文献   

19.
The structure of the K95 antigenic capsular polysaccharide (K95 antigen) of Escherichia coli O75:K95:H5 was elucidated by determination of the composition, 1H- and 13C-n.m.r. spectroscopy, periodate oxidation, and methylation analysis. The K95 polysaccharide, which contains furanosidic 3-deoxy-D-manno-2-octulosonic acid (KDOf) residues, consists of----3)-beta-D-Rib-(1----8)-KDOf-(2----repeating units, has a molecular weight of approximately 25,000 (approximately 65 repeating units), and is randomly O-acetylated (1 acetyl group per repeating unit at unknown positions).  相似文献   

20.
The rfbO9 gene cluster, which is responsible for the synthesis of the lipopolysaccharide O9 antigen, was cloned from Escherichia coli O9:K30. The gnd gene, encoding 6-phosphogluconate dehydrogenase, was identified adjacent to the rfbO9 cluster, and by DNA sequence analysis the gene order gnd-rfbM-rfbK was established. This order differs from that described for other members of the family Enterobacteriaceae. Nucleotide sequence analysis was used to identify the rfbK and rfbM genes, encoding phosphomannomutase and GDP-mannose pyrophosphorylase, respectively. In members of the family Enterobacteriaceae, these enzymes act sequentially to form GDP-mannose, which serves as the activated sugar nucleotide precursor for mannose residues in cell surface polysaccharides. In the E. coli O9:K30 strain, a duplicated rfbM2-rfbK2 region was detected approximately 3 kbp downstream of rfbM1-rfbK1 and adjacent to the remaining genes of the rfbO9 cluster. The rfbM isogenes differed in upstream flanking DNA but were otherwise highly conserved. In contrast, the rfbK isogenes differed in downstream flanking DNA and in 3'-terminal regions, resulting in slight differences in the sizes of the predicted RfbK proteins. RfbMO9 and RfbKO9 are most closely related to CpsB and CpsG, respectively. These are isozymes of GDP-mannose pyrophosphorylase and phosphomannomutase, respectively, which are thought to be involved in the biosynthesis of the slime polysaccharide colanic acid in E. coli K-12 and Salmonella enterica serovar Typhimurium. An E. coli O-:K30 mutant, strain CWG44, lacks rfbM2-rfbK2 and has adjacent essential rfbO9 sequences deleted. The remaining chromosomal genes are therefore sufficient for GDP-mannose formation and K30 capsular polysaccharide synthesis. A mutant of E. coli CWG44, strain CWG152, was found to lack GDP-mannose pyrophosphorylase and lost the ability to synthesize K30 capsular polysaccharide. Wild-type capsular polysaccharide could be restored in CWG152, by transformation with plasmids containing either rfbM1 or rfbM2. Introduction of a complete rfbO9 gene cluster into CWG152 restored synthesis of both O9 and K30 polysaccharides. Consequently, rfbM is sufficient for the biosynthesis of GDP-mannose for both O antigen and capsular polysaccharide E. coli O9:K30. Analysis of a collection of serotype O8 and O9 isolates by Southern hybridization and PCR amplification experiments demonstrated extensive polymorphism in the rfbM-rfbK region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号