首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protection against experimental allergic encephalomyelitis (EAE) was induced in susceptible mice of (SJL/J X BALB/c)F1 hybrid, by injection of either mouse spinal cord homogenate, the small mouse basic protein, or Cop 1 in incomplete Freund's adjuvant, before EAE induction. It was demonstrated that the unresponsiveness induced by the three antigens is mediated by suppressor T cells residing in the spleen cell population and can be adoptively transferred to normal syngeneic recipients. Low dose of cyclophosphamide (20 mg/kg) administered 2 days before the encephalitogenic challenge abrogated the unresponsiveness to EAE and reverted the protected mice sensitive to disease induction. Cyclophosphamide was also active on adoptively transferred unresponsiveness, thus donors that had been treated with cyclophosphamide were unable to further transfer unresponsiveness to EAE. These results indicate the elimination by cyclophosphamide of suppressor cells that interfere with the effector mechanisms leading to EAE.  相似文献   

2.
Relapsing experimental autoimmune encephalomyelitis (R-EAE) can be induced in SJL/J mice by immunization with spinal cord homogenate and adjuvant. The specific Ag(s) responsible for acute disease and subsequent relapses in this model is unknown. Myelin basic protein (BP), an encephalitogenic peptide of BP (BP 87-99), and proteolipid protein (PLP) can each induce R-EAE in SJL/J mice, and a peptide of PLP (PLP 139-151) has been reported to induce acute EAE. To determine the encephalitogens in cord-immunized mice with R-EAE, the in vitro proliferative responses of lymph node cells (LNC) and central nervous system mononuclear cells to BP, BP peptides, and PLP peptides were examined during acute EAE and during relapses. LNC responded only to PLP peptides 139-151 and 141-151 and did not respond to BP or its peptides during acute or chronic disease. Central nervous system mononuclear cells also preferentially responded to PLP 139-151 and 141-151 during acute and relapsing disease. A PLP 139-151 peptide-specific Th cell line was selected from LNC of cord-immunized donors. Five million peptide-specific line cells transferred severe relapsing demyelinating EAE to naive recipients. We conclude that PLP peptide 139-151 is the major encephalitogen for R-EAE in cord-immunized SJL/J mice. We demonstrate for the first time that Th cells specific for this peptide are sufficient to transfer relapsing demyelinating EAE. The predominance of a PLP immune response rather than a BP response in SJL/J mice suggests that genetic background may determine the predominant myelin Ag response in human demyelinating diseases such as multiple sclerosis.  相似文献   

3.
The potentiation of delayed-type hypersensitivity (DTH) reactions by pertussigen, a protein toxin from Bordetella pertussis, has been studied in adoptive transfer assays. Lymph node or spleen cells from mice treated with or without pertussigen at the time of immunization with protein antigens were transferred to naive, syngeneic recipients that were challenged with antigen. Cells from donors treated with pertussigen had the capacity to transfer vigorous, antigen-specific DTH reactions. Cells from immunized donors not given pertussigen transferred little or no DTH. These results indicate that pertussigen is able to augment DTH reactions by potentiating the antigen reactivity of cell populations in lymphoid organs. The phenotype of the effector cells induced by pertussigen was Thy-1 positive, L3T4 positive, and Ly-2 negative. Cells from mice given pertussigen and an irrelevant antigen had no influence on specific DTH responses, suggesting that pertussigen enhances the activity of the antigen-specific cell type mediating DTH. The effect of pertussigen and of immunization on the lymphocyte subpopulations present in the lymph nodes was studied by analysis of suspensions of lymph node cells by flow cytometry. In immunized and in nonimmune mice, pertussigen increased the ratio of Ly-2-negative:Ly-2-positive T cells, and reduced the overall proportion of B cells. In immunized mice, pertussigen induced a much higher proportion of large dividing cells from 5 days after sensitization onwards. The relevance of these changes in lymphocyte behavior to the development of enhanced and prolonged DTH in mice given pertussigen is discussed.  相似文献   

4.
When lymphoid cells from rats recovered from experimental autoimmune encephalomyelitis (EAE) were incubated in vitro for 1 hr with myelin basic protein (BP), then washed and transferred along with anti-BP immune serum to naive recipients, those recipients immediately developed a solid, long-lasting resistance to active induction of EAE. To obtain this high level of suppression, both steps of BP-incubation of cells and transfer of immune serum were found to be essential, i.e., direct transfer of nonincubated cells plus immune serum had no comparable suppressive effect, nor had transfer of BP-incubated cells with nonimmune serum. Specificity of the suppressive effect was indicated by the finding that cells from BP-sensitized donors, incubated with BP, protected against BP-CFA-induced disease but not against disease induced with whole spinal cord homogenate (SCH-CFA). As expected, cells from SCH-CFA-sensitized donors incubated with SCH protected recipients against disease induced with either SCH-CFA or BP-CFA. The suppression appears to act early in the afferent stage of the immune response, since inoculation with incubated cells as little as 24 hr after active challenge was ineffective. There was no suppression of passively induced disease.  相似文献   

5.
Irradiation of recipient Lewis rats 6–24 hr prior to injection of sensitized lymph node cells (LNC) altered the pattern of transferred experimental allergic encephalomyelitis (EAE). Recipients subjected to total body irradiation in doses ranging from 500 to 1000 rads developed paralysis; nonirradiated control recipients did not do so. Histopathologic changes of EAE, in terms of number of descrete cellular infiltrates, were potentiated in the total body irradiated recipients. Among LNC recipients subjected to regional irradiation (850 rads) of the head or lower spinal column, paralysis was observed only in those animals where the irradiation impinged upon the spinal cord. Cellular infiltrates of EAE were numerically more common in the irradiated region of the neuraxis. The findings are discussed in terms of irradiation rendering the central nervous system of animals and man more vulnerable to autoimmune injury.  相似文献   

6.
Optimal conditions were established for the adoptive transfer of experimental allergic encephalomyelitis (EAE) in SJL/J mice. Lymph node cells from SJL/J mice primed in vivo with myelin basic protein (BP) were incubated in vitro with BP. These cells proliferated specifically to BP and when transferred at the optimal conditions into syngeneic mice induced EAE in 100% of the recipients. The in vitro proliferative response to BP was dependent on the presence of Lyt 1+ 2- T lymphocytes. Furthermore, when the activated LNC were treated before transfer with anti-Thy 1 or anti-Lyt 1 antibody and C, neither clinical nor histologic signs were observed in the recipients, whereas treatment with anti-Lyt 2 antibody and C had no effect. These results indicated that Lyt 1+ 2- T cells are responsible for the transfer of EAE.  相似文献   

7.
Splenocytes from Lewis rats sensitized to guinea pig spinal cord (GPSC) and complete Freund's adjuvant (CFA) or to myelin basic protein (MBP)-CFA plus pertussis vaccine were less effective than spleen cells from MBP-CFA sensitized donors in transferring EAE to syngeneic recipients following culture with concanavalin A (Con A). Moreover, splenocytes from rats sensitized to GPSC-CFA plus pertussis vaccine showed no EAE transfer activity following culture with Con A. Diminished EAE transfer activity occurred in parallel with decreased proliferative responses of primed splenocytes to Con A. These effects were due, at least in part, to the use of pertussis vaccine and to Con A activation of a suppressive adherent cell subpopulation in sensitized donor spleens. Proliferative responses and EAE transfer activity were restored upon removal of plastic-adherent cells from splenocytes of rats sensitized to MBP-CFA plus pertussis vaccine prior to Con A activation of the non adherent lymphoid cells. Deletion of plastic-adherent cells from splenocytes of donors sensitized to GPSC-CFA plus pertussis vaccine prior to activation with Con A, however, had no effect on proliferative responses or EAE transfer activity. Furthermore, EAE transfer activity of Con A-activated splenocytes from MBP-CFA-sensitized donors was lost when such cells were cultured with splenocytes from donors sensitized to GPSC-CFA plus pertussis vaccine.  相似文献   

8.
The present investigation shows that autoreactive effector cells that transfer experimental allergic encephalomyelitis (EAE) can be activated from spleens and lymph nodes of Lewis rats given a single injection of 25 micrograms myelin basic protein (BP) in incomplete Freund's adjuvant (IFA), despite the fact that the cell donors do not develop EAE. Rather, these donor rats are unresponsive to EAE when given an encephalitogenic emulsion of BP in complete Freund's adjuvant (CFA). Lymphoid cells from rats given a single injection of BP-IFA were almost as effective as cells from BP-CFA-treated rats with respect to transferring EAE after in vitro activation with BP or concanavalin A (Con A). Irrespective of whether donors received BP in IFA or CFA, BP-cultured spleen and lymph node cells (SpC and LNC, respectively) transferred EAE, whereas Con A-cultured SpC but not LNC exhibited effector cell activity. Con A-cultured LNC were able to transfer EAE if the cultures were reconstituted with irradiated adherent phagocytic cells (which could be obtained from normal Lewis rat spleens) or with conditioned medium from these adherent SpC. These findings indicate that accessory cells are required for in vitro induction of this T cell-mediated autoimmune response.  相似文献   

9.
Lewis rats are susceptible to experimental autoimmune encephalomyelitis (EAE). Most rats recover from paralysis and are subsequently resistant to the disease. In an adoptive transfer system, we found that lymph node cells (LNC) from rats that had recovered from EAE protect syngeneic recipients from the disease when the latter are challenged with encephalitogenic myelin basic protein and adjuvant after receiving donor cells. Suppression is antigen-specific and requires viable LNC. In contrast to the suppressor cells we previously studied in tolerized rats, which were nonadherent T lymphocytes, the suppressor cells found in rats that have recovered from EAE adhere to glass wool. However, they are not retained on Sephadex G-10 columns to which macrophages adhere. Suppressor activity is enriched in the nylon wool-adherent LNC population (which consists of approximately 80% Ig+ cells). Our findings suggest that activation of adherent suppressor cells may be implicated in recovery from EAE. These may be adherent T cells, or B cells that produce anti-BP blocking antibodies.  相似文献   

10.
EAE can be adoptively transferred into normal recipients by the transfer of BP-specific EAE effector cells. After cell transfer, a series of ill-defined events occur in the recipient that culminate in the development of paralysis associated with neural tissue damage. We investigated the subsequent recipient response to the adoptively transferred disease and examined the role that recipient lymphocytes play in the development of adoptively transferred EAE. Recipient involvement was assessed by the transfer of EAE through a series of normal F1 animals as recipients and at the endpoint of the experiment, determining the MHC restriction pattern of the BP-sensitive cells present. The serial transfer of EAE from BP-CFA-sensitized LEW----(LEW X F-344)F1----(LEW X P2)F1, and from BP-CFA sensitized LEW----(LEW X F344)F1----(LEW X F-344)F1, resulted in the development of BP-sensitive cells in the spleens of the secondary recipients that were able to transfer disease into normal LEW recipients. To test directly for the development of host-derived BP-sensitive cells that might arise in the F1 animal, the serial transfer of EAE from LEW----(LEW X ACI)F1----(LEW X ACI)F1 was performed. When BP-sensitive cells obtained from the secondary (LEW X ACI)F1 recipient animal were transferred into either normal LEW and ACI, or irradiated LEW and ACI animals as final recipients, transfer of disease was successful only into the LEW parental. These results suggest that the development of passive EAE is due solely to the transferred BP-sensitive cells originating from the actively immunized donor, and that no host-derived lymphocytes are recruited into the pool of EAE effector precursor cells found in the spleen of animals after the development of adoptively transferred EAE.  相似文献   

11.
Lymph node cells (LNC) from Lewis rats rendered unresponsive to experimental allergic encephalomyelitis (EAE) by pretreatment with myelin basic protein markedly suppressed clinical (but not histologic) EAE in normal recipients later challenged with an encephalitogenic emulsion. Unresponsiveness was immunologically specific, and required viable LNC; serum transfer was ineffective. These findings suggest that suppressor cells exert control over this autoimmune disease.  相似文献   

12.
A chronic demyelinating disease results from murine infection with the neurotropic strain JHM of mouse hepatitis virus (MHV-JHM). Demyelination is largely immune mediated. In this study, the individual roles of CD4 and CD8 T cells in MHV-induced demyelination were investigated using recombination-activating gene 1-/- (RAG1-/-) mice infected with an attenuated strain of MHV-JHM. These animals develop demyelination only after adoptive transfer of splenocytes from mice previously immunized to MHV. In this study, we show that, following adoptive transfer, virus-specific CD4 and CD8 T cells rapidly infiltrate the CNS of MHV-JHM-infected RAG1-/- mice. Adoptive transfer of CD4 T cell-enriched donors resulted in more severe clinical disease accompanied by less demyelination than was detected in the recipients of undepleted cells. Macrophage infiltration into the gray matter of CD4 T cell-enriched recipients was greater than that observed in mice receiving undepleted splenocytes. In contrast, CD8 T cell-enriched recipients developed delayed disease with extensive demyelination of the spinal cord. MHV-JHM-infected RAG1-/- mice receiving donors depleted of both CD4 and CD8 T cells did not develop demyelination. These results demonstrate that the development of demyelination following MHV infection may be initiated by either CD4 or CD8 T cells. Furthermore, they show that CD4 T cells contribute more prominently than CD8 T cells to the severity of clinical disease, and that this correlates with increased macrophage infiltration into the gray matter.  相似文献   

13.
Using an adoptive transfer model of experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein (MBP)-reactive lymph node cells (LNC), we have shown that depletion of gammadelta T cells from LNC resulted in diminished severity of EAE in recipient mice, both clinically and histopathologically. The reduced potency of gammadelta T cell-depleted LNC to induce EAE correlated with decreased cell proliferation in response to MBP. The gammadelta T cell effect upon the threshold of MBP-induced LNC proliferation and EAE transfer was restored by reconstitution of gammadelta T cells derived from either MBP-immunized or naive mice, indicating that this effect was not Ag specific. The enhancing effect of gammadelta T cells on MBP-induced proliferation and EAE transfer required direct cell-to-cell contact with LNC. The gammadelta T cell effect upon the LNC response to MBP did not involve a change in expression of the costimulatory molecules CD28, CD40L, and CTLA-4 on TCRalphabeta(+) cells, and CD40, CD80, and CD86 on CD19(+) and CD11b(+) cells. However, depletion of gammadelta T cells resulted in significant reduction in IL-12 production by LNC. That gammadelta T cells enhanced the MBP response and severity of adoptive EAE by stimulating IL-12 production was supported by experiments showing that reconstitution of the gammadelta T cell population restored IL-12 production, and that gammadelta T cell depletion-induced effects were reversed by the addition of IL-12. These results suggest a role for gammadelta T cells in the early effector phase of the immune response in EAE.  相似文献   

14.
Guinea pig basic protein (GPBP)-immune lymph node cells (LNC) from SJL, PL, and SJL x PL (F1) mice proliferated to whole GPBP and GPBP fragments 1-37, 43-88, and 89-169. All three strains of mice developed experimental allergic encephalomyelitis (EAE) by active immunization with whole GPBP or by passive transfer of LNC cultured with whole GPBP. SJL (H-2s) and PL (H-2u) mice developed EAE by active immunization with fragments 89-169 or 1-37, respectively, or by passive transfer of LNC cultured with the same Ag. F1 mice developed EAE by active immunization only with fragment 1-37 or by passive transfer of LNC cultured with either of the above fragments. Removal of macrophages (MO) from immune-F1 LNC resulted in the loss of a proliferative response and the ability to transfer EAE. Reconstitution of MO-depleted immune F1 T cells with either F1-, SJL-, or PL-MO restored the proliferative responses to whole GPBP and the three fragments. Cultures of immune F1 T cells reconstituted with any of the three MO populations and incubated with whole GPBP passively transferred EAE into naive F1 mice. Immune F1 T cells cultured with F1 MO in the presence of either fragment 1-37 or 89-169 transferred EAE. F1 T cells cultured with SJL MO were able to transfer EAE only if the Ag was fragment 89-169, whereas F1 T cells cultured with PL MO were able to transfer disease only if incubated in the presence of fragment 1-37. F1 mice are passively susceptible to EAE induced by adoptive transfer of cells reactive to either the N-terminal or C-terminal fragment and that the encephalitogenic determinant of GPBP is related to the genome of MO present in vitro.  相似文献   

15.
This investigation focused on the role of adherent accessory cells and their cellular product, interleukin 1 (IL 1), in cellular immune responses associated with experimental autoimmune encephalomyelitis (EAE) in Lewis rats. Guinea pig myelin basic protein (GPMBP)-sensitized lymph node cells (LNC) responded in culture with GPMBP by undergoing activation as measured by augmented transfer of EAE to syngeneic recipients, and proliferation as measured by [3H]thymidine incorporation. GPMBP-sensitized LNC, after depletion of adherent accessory cells, no longer responded to GPMBP in the EAE transfer activation assay. In contrast, aliquots of the same LNC preparation exhibited proliferative responses to GPMBP that were only partially reduced. Addition of irradiated thymocytes to adherent cell-depleted cultures fully reconstituted responsiveness to GPMBP in the activation assay and restored full reactivity to GPMBP in the proliferation assay. Furthermore, addition of either purified human IL 1 or recombinant human IL 1 to adherent cell-depleted cultures reconstituted reactivity to GPMBP in the EAE transfer activation assay and augmented GPMBP-specific proliferative responses. Anti-Ia monoclonal antibodies blocked GPMBP + IL 1-induced cellular activation of nonadherent LNC. These results demonstrate that both IL 1 and Ia molecules are important in the pathway leading to GPMBP-induced activation of EAE-inducing T lymphocytes. Furthermore, these results suggest that different accessory signals may be required for optimal induction of GPMBP-induced lymphocyte activation vs GPMBP-specific proliferative responses.  相似文献   

16.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) T cell-mediated disease of the central nervous system. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report that SAP-transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35-55 in complete Freund's adjuvant, SAP-transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However, in SAP-Knockout mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild type to SAP-transgenic mice, or transfer of SAP-transgenic Ag-restimulated T cells to control mice, induced milder EAE. T cells from MOG-primed SAP-transgenic mice showed weak proliferative responses. Furthermore, in SAP-transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of interleukin-2 stimulated by P-selectin and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin.  相似文献   

17.
Suppressor cells for delayed footpad reaction (DFR) against syngeneic testicular cells (TC) were detected in the spleen cells of donor mice immunized intravenously (iv) with viable syngeneic TC. Cyclophosphamide (CY)-pretreated recipients were given spleen cells from donors iv, immunized subcutaneously (sc) with syngeneic TC, and the footpad reaction at 24 hr was elicited with syngeneic TC 6 days after immunization. DFR in the recipients was suppressed by the transfer of spleen suppressor cells. The suppressor cells induced were Thy-1+, CY-sensitive, adult thymectomy (ATx)-resistant and act only at the induction stage. They directly suppress the generation of effector T cells for delayed-type hypersensitivity (DTH). When mice pretreated with CY were actively immunized with syngeneic TC, DFR could be provoked to a measurable level only when they were immunized sc. However, peritoneal exudate cells of those tolerant mice immunized sc without CY pretreatment or immunized iv with CY pretreatment also passively transferred DFR locally, suggesting the existence of effector T cells for DTH even in tolerant mice.  相似文献   

18.
Mac-1 (CD18/CD11b) is a member of the beta2-integrin family of adhesion molecules and is implicated in the development of many inflammatory diseases. The role of Mac-1 in the development of CNS demyelinating diseases, including multiple sclerosis, is not understood, and Ab inhibition studies in experimental allergic encephalomyelitis (EAE), the animal model for multiple sclerosis, have produced conflicting findings. To clarify these results and to determine Mac-1-mediated mechanisms in EAE, we performed EAE using Mac-1-deficient mice. Mac-1 homozygous-deficient, but not Mac-1 heterozygous-deficient mice, had significantly delayed onset and attenuated EAE. Leukocyte infiltration was similar in both groups of mice in early disease but significantly reduced in spinal cords of receptor-deficient mice in late disease. Adoptive transfer of Ag-restimulated T cells from wild-type to Mac-1-deficient mice produced significantly attenuated EAE, whereas transfer of Mac-1-deficient Ag-restimulated T cells to control mice failed to induce EAE. T cells from myelin oligodendrocyte glycoprotein (MOG)35-55 peptide-primed Mac-1-deficient mice displayed an altered cytokine phenotype with elevated levels of TGF-beta and IL-10, but reduced levels of IL-2, IFN-gamma, TNF-alpha, IL-12, and IL-4 compared with control mice. Mac-1-deficient T cells from primed mice proliferated comparably to that of control T cells on MOG35-55 restimulation in vitro. However, the draining lymph nodes of MAC-1-deficient mice on day 10 after MOG35-55 immunization contained lower frequency of blast T cells than in control mice, suggesting poor priming. Our results indicate that Mac-1 expression is critical on both phagocytic cells and T cells for the development of demyelinating disease.  相似文献   

19.
Hyaluronan (HA) may have proinflammatory roles in the context of CNS autoimmunity. It accumulates in demyelinated multiple sclerosis (MS) lesions, promotes antigen presentation, and enhances T-cell activation and proliferation. HA facilitates lymphocyte binding to vessels and CNS infiltration at the CNS vascular endothelium. Furthermore, HA signals through Toll-like receptors 2 and 4 to stimulate inflammatory gene expression. We assessed the role of HA in experimental autoimmune encephalomyelitis (EAE), an animal model of MS by administration of 4-methylumbelliferone (4MU), a well established inhibitor of HA synthesis. 4MU decreased hyaluronan synthesis in vitro and in vivo. It was protective in active EAE of C57Bl/6 mice, decreased spinal inflammatory infiltrates and spinal infiltration of Th1 cells, and increased differentiation of regulatory T-cells. In adoptive transfer EAE, feeding of 4MU to donor mice significantly decreased the encephalitogenicity of lymph node cells. The transfer of proteolipid protein (PLP)-stimulated lymph node cells to 4MU-fed mice resulted in a delayed EAE onset and delayed spinal T-cell infiltration. Expression of CXCL12, an anti-inflammatory chemokine, is reduced in MS patients in CSF cells and in spinal cord tissue during EAE. Hyaluronan suppressed production of CXCL12, whereas 4MU increased spinal CXCL12 in naive animals and during neuroinflammation. Neutralization of CXCR4, the most prominent receptor of CXCL12, by administration of AMD3100 diminished the protective impact of 4MU in adoptive transfer EAE. In conclusion, hyaluronan exacerbates CNS autoimmunity, enhances encephalitogenic T-cell responses, and suppresses the protective chemokine CXCL12 in CNS tissue. Inhibition of hyaluronan synthesis with 4MU protects against an animal model of MS and may represent an important therapeutic option in MS and other neuroinflammatory diseases.  相似文献   

20.
We show here using a transgenic model that human C-reactive protein (CRP) protects against experimental allergic encephalomyelitis (EAE) in C57BL/6 mice. In transgenic compared with wild-type females, the duration of the human CRP acute phase response that accompanies the inductive phase of active EAE correlates with a delay in disease onset. In transgenic males, which have higher human CRP expression than females do, EAE is delayed, and its severity is reduced relative to same-sex controls. Furthermore, in male transgenics, there is little or no infiltration of the spinal cord by CD3(+) T cells and CD11b(+) monocytes and macrophages, and EAE is sometimes prevented altogether. CRP transgenics also resist EAE induced passively by transfer of encephalitogenic T cells from wild-type donors. Human CRP has three effects on cultured encephalitogenic cells that could contribute to the protective effect observed in vivo: 1) CRP inhibits encephalitogenic peptide-induced proliferation of T cells; 2) CRP inhibits production of inflammatory cytokines (TNF-alpha, IFN-gamma) and chemokines (macrophage-inflammatory protein-1alpha, RANTES, monocyte chemoattractant protein-1); and 3) CRP increases IL-10 production. All three of these actions are realized in vitro only in the presence of high concentrations of human CRP. The combined data suggest that during the acute phase of inflammation accompanying EAE, the high level of circulating human CRP that is achieved in CRP-transgenic mice inhibits the damaging action of inflammatory cells and/or T cells that otherwise support onset and development of EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号