首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The choline analog homocholine is not acetylated in vitro by choline- O -acetyltransferase (ChAT, EC 2.3.1.6), which is solubilized by 100 mM-sodium phosphate buffer washes of a crude vesicular fraction of mouse forebrain. However, both homocholine and choline are acetylated by a form of ChAT which is nonionically associated with a subcellular fraction of mouse forebrain containing membrane-associated organelles and occluded acetylcho-line (P4). Acetylation of homocholine by membrane-associated ChAT is saturable. 4-(1-Naphthylvinyl)pyridine (NVP) inhibits the acetylation of both choline (60%) and homocholine (40%) by membrane-associated ChAT but reduces the acetylation of choline alone by soluble ChAT (76%). Choline and homocholine serve as competitive alternative substrates for the same membrane-associated ChAT, whereas homocholine acts only as a competitive inhibitor of choline acetylation by soluble ChAT. Acetylhomocholine competitively inhibits the acetylation of choline by both soluble and membrane-associated ChAT more dramatically than does the natural end product, acetylcholine.  相似文献   

2.
Abstract: Ethyl analogues of homocholine were synthesized and used to describe further the specificities of the processes involved in choline uptake and acetylation and acetylcholine storage and release. Monoethylhomocholine, diethylhomocholine, and triethylhomocholine decreased the transport of choline into rat brain synaptosomes. The mono- and diethyl compounds were taken up into synaptosomes with similar affinity for the transport system as choline (5.8, 8.5, and 5.5 μ M , respectively) but at a somewhat slower rate (11.3, 8.5, and 37.3 nmol/g original tissue/h, respectively); the triethyl analogue was not transported at the concentrations tested, which further defines the structural specificity of the transport system. l -Carnitine did not affect the transport of the analogues. The in situ acetylation of mono- and diethyl-homocholine by slices of rat cerebral cortex was measurable, but the in vitro acetylation by choline acetyl-transferase solubilized from rat forebrain was not. Acetylation of the diethyl analogue by slices of cerebellar cortex was <20% of that by slices of cerebral cortex. Subcellular fractionation of cerebral slices showed that acetyldiethylhomocholine localized preferentially to the cytosolic rather than vesicular stores, indicating specificity of the mechanism responsible for the incorporation of acetylated product into the vesicles. The release of acetyldiethylhomocholine and of acetylcholine was tested from sliced brain that had been incubated with the precursors. Both esters were released spontaneously but stimulation with increased K+ concentration enhanced the release of acetylcholine without changing the release of acetyldiethylhomocholine, suggesting that evoked transmitter release occurred from a vesicular store.  相似文献   

3.
R M Dick  J J Freeman  J W Kosh 《Life sciences》1985,36(12):1183-1188
A nitrogen phosphorus-gas chromatographic procedure was modified to determine the extent of in vivo acetylation of the choline analogs homocholine and beta-methylcholine. Infusion of homocholine (18 mumoles) for 2 hours into the lateral ventricle of the rat produced 2.3 nmoles/gram of acetylhomocholine which represented 0.035% of the detected homocholine. Infusion of the same quantity of beta-methylcholine produced 1.0 nmole/gram of acetyl-beta-methylcholine representing 0.025% of the detected beta-methylcholine. Although pretreatment with hemicholinium-3 reduced the amount of acetylated product formed from either analog, the reduction was significant only for acetyl-beta-methylcholine (p less than 0.01).  相似文献   

4.
The accumulation of [3H]homocholine (3-trimethylamino-propan-1-01) by isolated synaptosomes prepared from rat brain was resolved kinetically into a high (KT= 3.0 μM) and a low (KT= 14.5 μM) affinity system. Although homocholine was not acetylated by solubilized choline acetyltransferase, 64% of the homocholine accumulated by intact synaptosomes via the high affinity uptake process was acetylated. Homocholine was also acetylated in the superior cervical ganglion of the cat, and the amount of acetylhomocholine formed was increased (12-fold) by preganglionic nerve stimulation. In ganglia, acetylhomocholine was available for release by preganglionic nerve impulses, and its release was Ca2+-dependent, It is concluded that homocholine can form a cholinergic false transmitter, and that the substrate specificity of choline acetyltransferase in vitro might be different from that in situ.  相似文献   

5.
The colocalization of vasoactive intestinal polypeptide (VIP) with the cholinergic specific surface antigen Chol-1 was investigated in synaptosomes derived from the rat cerebral cortex. Immunoaffinity purification of cortical synaptosomes using antisera to Chol-1 resulted in the copurification of VIP and cholinergic nerve terminals. VIP was purified with a yield of 75% of that of choline acetyltransferase (ChAT). These results suggest that approximately 53% of the cortical cholinergic terminals contain VIP, whereas 75% of the cortical VIP content is present in these cholinergic terminals. Both hypotonic lysis and depolarization of the nerve terminals resulted in the differential release of VIP and acetylcholine (ACh), indicating the different compartmentalization in the same nerve terminal. Complement-mediated lysis of cholinergic nerve terminals, using antisera to Chol-1, resulted in the release of 64% of the ChAT, 71% of ACh, and 27% of the VIP. The application of our method enables quantifying and mapping, with a fast, efficient, and specific technique, the coexisting peptides in cholinergic neurons of distinct brain areas.  相似文献   

6.
Abstract: The kinetic parameters, Km and Vmax, for the acetylation of choline and several close analogues were determined by using (a) purified choline acetyltransferase and (b) a hypotonically lysed synaptosomal extract prepared from the electric organ of Torpedo marmorata. Whereas the Km for choline was similar in both cases (0.51 and 0.42 m m ), the crude enzyme showed a three- to fivefold greater affinity for its analogues than the purified enzyme, the activity decreasing rapidly with increased N -alkyl substitution. Homocholine was a poor substrate, but was clearly acetylated by both preparations. The effect of salt on analogue acetylation by the crude enzyme was studied by increasing NaCl concentration from zero to 150 m m . There was an increase in both Km and Vmax for all substrates; choline, N,N,N -dimethylmonoethylaminoethanol, -monomethyldiethylaminoethanol and -dimethylmonobutylaminoethanol showed the greatest changes, whilst N,N,N -triethylaminoethanol and -dimethylmonopropylaminoethanol and homocholine were much less affected. However, in all cases, the kinetic parameter Vmax / Km remained unchanged. The maximal velocities of the different substrates varied more under conditions of high than of low salt. Sodium chloride up to 300 m m had no effect on the amount of enzyme which was bound to membranes in the synaptosomal extract. It is concluded that choline acetyltransferase has a high degree of substrate specificity, which is slightly altered by purification. The effects of salt cannot be explained as a consequence of nonspecific ionic association with membranes.  相似文献   

7.
Abstract: The biochemical mechanisms involved in the regulation of acetylcholine (ACh) turnover are poorly understood. In the experiments reported here, we examined whether inhibition of the serine/threonine phosphatases 1 and 2A by calyculin A or okadaic acid alters ACh synthesis by rat hippocampal preparations. With hippocampal slices, calyculin A (50 n M ) and okadaic acid (50 n M ) reduced significantly ( p < 0.01) the synthesis of [3H]ACh from [3H]choline. Both calyculin A and okadaic acid produced significant depletion of endogenous tissue ACh in a concentration-dependent manner ( p < 0.01). This depletion was not the result of a drug-induced increase of spontaneous ACh release, which was not changed significantly ( p > 0.7) by either drug. Choline acetyltransferase (ChAT) activity from tissue exposed to calyculin A or okadaic acid was reduced in a concentration-dependent manner ( p < 0.05), but these phosphatase inhibitors did not act directly on ChAT in vitro; i.e., enzymatic activity was not altered significantly ( p > 0.4) in the presence of calyculin A or okadaic acid. Both high-affinity and low-affinity [3H]choline uptake by hippocampal synaptosomes were reduced significantly in a concentration-dependent manner in the presence of calyculin A or okadaic acid; these agents reduced V max values for high- and low-affinity choline uptake ( p < 0.01) with no significant change in K m values ( p > 0.1), indicating a noncompetitive inhibition. Taken together, these data suggest that phosphatase activity plays a role in presynaptic central cholinergic nerve terminal function, in particular in the modulation of ACh synthesis.  相似文献   

8.
Abstract: The characteristic pathological features of the postmortem brain of Alzheimer's disease (AD) patients include, among other features, the presence of neuritic plaques composed of amyloid β-peptide (Aβ) and the loss of basal forebrain cholinergic neurons, which innervate the hippocampus and the cortex. Studies of the pathological changes that characterize AD and several other lines of evidence indicate that Aβ accumulation in vivo may initiate and/or contribute to the process of neurodegeneration and thereby the development of AD. However, the mechanisms by which Aβ peptide influences/causes degeneration of the basal forebrain cholinergic neurons and/or the cognitive impairment characteristic of AD remain obscure. Using in vitro slice preparations, we have recently reported that Aβ-related peptides, under acute conditions, potently inhibit K+-evoked endogenous acetylcholine (ACh) release from hippocampus and cortex but not from striatum. In the present study, we have further characterized Aβ-mediated inhibition of ACh release and also measured the effects of these peptides on choline acetyltransferase (ChAT) activity and high-affinity choline uptake (HACU) in hippocampal, cortical, and striatal regions of the rat brain. Aβ1–40 (10?8M) potently inhibited veratridine-evoked endogenous ACh release from rat hippocampal slices and also decreased the K+-evoked release potentiated by the nitric oxide-generating agent, sodium nitroprusside (SNP). It is interesting that the endogenous cyclic GMP level induced by SNP was found to be unaltered in the presence of Aβ1–40. The activity of the enzyme ChAT was not altered by Aβ peptides in hippocampus, cortex, or striatum. HACU was reduced significantly by various Aβ peptides (10?14 to 10?6M) in hippocampal and cortical synaptosomes. However, the uptake of choline by striatal synaptosomes was altered only at high concentration of Aβ (10?6M). Taken together, these results indicate that Aβ peptides, under acute conditions, can decrease endogenous ACh release and the uptake of choline but exhibit no effect on ChAT activity. In addition, the evidence that Aβ peptides target primarily the hippocampus and cortex provides a potential mechanistic framework suggesting that the preferential vulnerability of basal forebrain cholinergic neurons and their projections in AD could relate, at least in part, to their sensitivity to Aβ peptides.  相似文献   

9.
Abstract— Free choline and acetylcholine (ACh) in mouse or rat brain were assayed biologically. The subcellular distribution of ACh in brain slices that had been incubated in the presence of eserine was compared to that in control brain; during incubation, the ACh outside nerve endings increased four-fold, the ACh released from synaptosomes by osmotic shock doubled but the ACh bound firmly within nerve endings did not increase. The two nerve ending stores of ACh were labelled to similar specific radioactivities when slices were incubated with [3H]choline, but the specific radioactivity of the ACh formed was much lower than that of the added choline. Tissue incubated in the presence of eserine released choline and ACh into the medium and the tissue levels of both substances increased. Brain tissue exposed to Na+-free medium lost 84 per cent of its ACh and 66 per cent of its free choline; the amounts of both substances returned towards control values during subsequent incubation in a normal-Na+ medium (choline-free). Both the ACh outside nerve endings and the ACh associated with synaptosomes were depleted when tissue was incubated in Na+-free medium.  相似文献   

10.
Three forms of acetyl coenzyme A: choline-O-acetyltransferase (EC 2.3.1.6, ChAT) have been isolated from mouse and rat forebrain synaptosomes with a 100 mM sodium phosphate (NaP) buffer of pH 7.4, a high-salt solution (500 mM NaCl), and a 2% Triton DN-65 solution, respectively. The Triton-solubilized form of ChAT differed from the other two forms in its capacity to acetylate homocholine, its pH profile, and its sensitivity to denaturation. NaCl-solubilized ChAT could be distinguished from the other two forms with respect to pH profile, sensitivity to inhibition by 4-(1-naphthylvinyl) pyridine (in the presence of Triton), and apparent Km value for choline acetylation. The caudate and putamen of rat brain contained the highest amount of ChAT activity, based on tissue wet weight, and the cerebellum contained the least of the brain regions examined; only the cerebellum had more membrane-bound than soluble ChAT. Septal lesion reduced ChAT activity in the NaP- and Triton-solubilized fractions prepared from hippocampus by 68% and 64%, respectively, whereas it reduced the activity of the NaCl-solubilized fraction by only 21%. These results suggest that three different forms of ChAT may exist in both mouse and rat brain.  相似文献   

11.
—The role of ACh-stimulated 32Pi incorporation into the phospholipids of rat cerebral cortex slices and isolated nerve endings (synaptosomes) has been studied. ACh stimulation is not connected with any carrier-mediated uptake of ACh. Such uptake may occur in slices in the presence of the anticholinesterase Sarin but barely in the presence of eserine. Regardless of the nature of the anticholinesterase used, rat cerebral cortex synaptosomes that respire and show high and low affinity choline uptake do not accumulate ACh against a concentration gradient. At exogenous ACh concentrations of 10–5m and above, some ACh enters the synaptosomes by diffusion and significantly stimulates 32Pi incorporation into phosphatidic acid. It is discussed whether, in isolated nerve endings, an increase in cytoplasmic ACh concentration due to diffusion may induce vesicle turnover to keep a balance between ‘free’ and bound ACh or if a presynaptic ACh receptor is responsible for the observed changes in phosphatidic acid. The distribution of accumulated radioactivity derived from exogenous choline and ACh respectively between ACh, choline, phosphorylcholine and betaine has been studied in slices and isolated nerve endings.  相似文献   

12.
The objective of this study was to determine the subcellular origin of cholinergic transmitter released spontaneously from mouse forebrain minces. To accomplish this objective, minces were pretreated in ionic media and then loaded with [14C]homocholine, an analog of choline, to form the false transmitter [14C]acetylhomocholine [( 14C]AHCh). The ratio of the false transmitter [14C]AHCh to the true transmitter ACh was then used as an index of cholinergic transmitter contents for both the cytoplasmic (S3) and vesicle-bound (P3) fractions. Three different pretreatment procedures were used to cause the following changes in S3 and P3 false to true transmitter ratios prior to spontaneous release: 1) a small increase in the S3 ratio of [14C]AHCh to acetylcholine (ACh) and a large increase in the P3 ratio of [14C] AHCh to ACh; 2) a decrease in the S3 ratio of [14C]AHCh to ACh and an increase in the P3 ratio of [14C]AHCh to ACh; 3) an increase in the P3 ratio of [14C]AHCh to ACh without affecting the S3 ratio of [14C]AHCh to ACh. The influence of each pretreatment on these subcellular ratios was then compared with its influence on the spontaneous release ratio of [14C]AHCh to ACh. In all 3 instances, the influence of pretreatment on the ratio of spontaneously released false and true cholinergic transmitters from minces coincided with the effect of pretreatment on the pre-release ratio of false to true transmitter in the S3 fraction. These results suggest that much of the cholinergic transmitter which is spontaneously released from mouse forebrain occurs from the cytroplasmic fraction.  相似文献   

13.
Presynaptic muscarinic and nicotinic receptors in the cerebral cortex reportedly inhibit and increase acetylcholine (ACh) release, respectively. In this study, we investigated whether these receptors reside on cholinergic nerve terminals projecting to the cerebral cortex from the nucleus basalis magnocellularis (nbm). Adult male rats received unilateral infusions of ibotenic acid (5 micrograms/1 microliter) in the nbm. Two weeks later, cerebral cortical cholinergic markers (choline acetyltransferase activity, high-affinity choline uptake, and coupled ACh synthesis) were significantly reduced in synaptosomes prepared from the lesioned hemispheres compared to contralateral controls. The depolarization-induced release of [3H]ACh from these synaptosomes was also reduced in the lesioned hemispheres, reflecting the reduced synthesis of transmitter. However, the nbm lesions had no effect on the inhibition of release induced by 100 microM oxotremorine. Synaptosomal [3H]ACh release was not altered by nicotine or the nicotinic agonists anabaseine and 2-(3-pyridyl)-1,4,5,6-tetrahydropyrimidine. Nicotine (10-100 microM) did increase [3H]ACh release in control and lesioned hemispheres in cortical minces, but to a similar extent. These results suggest that neither muscarinic nor nicotinic receptors modulating ACh release reside on nbm-cholinergic terminals.  相似文献   

14.
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process.  相似文献   

15.
High-affinity uptake of choline and choline acetyltransferase activity (ChAT) were measured in the striatum of rats treated for 45-60 days with haloperidol (1 mg/kg per os) and pimozide (1 mg/kg per os) daily and with fluspirilene (1 mg/kg i.m.) twice a week. Haloperidol and fluspirilene caused a 20%, and pimozide a 38%, increase in high-affinity uptake of choline. They also caused a significant decrease in ChAT activity: haloperidol, 20%; pimozide, 27%; and fluspirilene, 42%. In rats treated with fluspirilene for 65-80 days the metabolism of [3H] choline taken up by striatal synaptosomes was investigated. A 33% increase in total radioactivity, a significant increase in labelled acetylcholine (ACh), a relative decrease in labelled choline, and no change in labelled phosphorylcholine and betaine were found. It is concluded that the increase in high-affinity choline uptake caused by chronic administration of neuroleptic drugs is associated with a parallel increase in choline utilization for ACh formation. On the other hand, the decrease in ChAT activity does not appear to influence ACh formation.  相似文献   

16.
Abstract: The accumulation of choline, homocholine, and 4-hydroxybutyl-trimethylammonium by rat brain synaptosomes was measured; the choline uptake mechanism transported homocholine but not hydroxybutyltrimethylammonium, which, in addition, did not block choline accumulation. In cats'superior cervical ganglia, preganglionic nerve stimulation increased the accumulation of homocholine, but not that of hydroxybutyltrimethylammonium. It is concluded that the substrate specificity of the choline transport mechanism is such that increasing the N-O atom distance by one methylene group retains affinity, but increasing this distance by two methylene groups does not.  相似文献   

17.
Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe. The ACh release evoked by K+ depolarization was found to be very high (0.04 pmol ACh.s(-1).mg(-1) protein). In response to stimulation by veratridine, a secretagogue (a substance that induces secretion) that targets voltage-gated Na+ channels, the release rate and the total amount of ACh released were significantly lower, by 10-fold, than the response induced by KCl. The high-affinity uptake of choline was also very high (31 pmol Ch.min(-1).mg(-1) protein). The observed ACh release and Ch uptake patterns are in good agreement with published data on preparations characterized by high levels of ACh metabolism, adding further evidence that ACh acts as a neurotransmitter in cuttlefish optic lobe.  相似文献   

18.
19.
Cholinergic processes were measured in motor cortex, hippocampus, and striatum of cats in the terminal stages of GM1 gangliosidosis and compared to those of control cats. The greatest difference observed was elevation in the rate of K+-stimulated release of acetylcholine (ACh) from brain slices prepared from affected cats. The K+-stimulated release of endogenous ACh was increased by 31-43% and of newly synthesized ACh by 19-80% in brain slices from different brain regions. All regions that were examined were affected but the greatest effects occurred in cortex. The rate of synthesis of ACh was elevated in cortical and hippocampal slices. Choline acetyltransferase activity in brain regions of cats with GM1 gangliosidosis was not significantly different from that in controls, whereas high-affinity choline transport in cortical synaptosomes was elevated. Muscarinic receptor binding sites were reduced in the cortex, hippocampus, and striatum of GM1 mutant cats, whereas the apparent affinity was not altered. These results indicate that there are major alterations of cholinergic function in the brains of cats with GM1 gangliosidosis.  相似文献   

20.
The multiple molecular forms of choline acetyltransferase (ChAT) were analysed during the postnatal development of rat brain. Changes in the sodium-dependent, high affinity uptake of [3H]choline (HAUC) and in the efficiency of conversion of labelled choline into ACh in vitro were also examined. Both mature and 7-day old brain contained three molecular forms of ChAT, with isoelectric points of pH 7.3, 7.9 and 8.3, but the immature brain appeared to contain smaller concentrations of the most basic form of the enzyme (pI = 8.3). Of the total choline uptake measured in slices of frontal cortex, adult samples exhibited a greater proportion of HAUC than 7-day samples and appeared to acetylate more efficiently the [3H]choline accumulated by high affinity uptake. This evidence suggests a basic molecular form of ChAT, appearing in rat brain during postnatal development, might be responsible for the efficient coupling of the high affinity uptake and subsequent acetylation of choline in cholinergic nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号