首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weather and climatic conditions may impact on the phenology and morphology of birds, and thereby affect their survival rate and population dynamics. We examined the North Atlantic Oscillation (NAO), precipitation in the Sahel zone, temperatures in the wintering grounds, on the migration route, and in the breeding area in relation to arrival dates and six morphological measures (wing, tarsus, bill, and tail lengths, body mass, body condition) in a Slovak population of the River Warbler Locustella fluviatilis. Arrival dates did not change significantly over the study period, but were significantly positively correlated with NAO, although not with temperatures in wintering areas, migration route or breeding area, nor with Sahel precipitation. Four of the six morphological traits changed during the study period and part of the change in condition index can be attributed to climatic variables. We suggest changes in birds phenotype vary with food availability, which fluctuate according to climate events.  相似文献   

2.
Migratory species are subject to environmental variability occurring on breeding and wintering grounds. Estimating the relative contribution of environmental factors experienced sequentially during breeding and wintering, and their potential interaction, to the variation of survival is crucial to predict population viability of migratory species. Here we investigated this issue for the Montagu's harrier Circus pygargus, a trans‐Saharan migrant. We analysed capture–recapture data from a 29‐year long monitoring of wing‐tagged offspring and adults at two study sites in France (Rochefort‐RO and Maine‐et‐Loire‐ML). The study period covers a climatic shift occurring in the Sahel with increasing rainfall following a period of droughts (Sahel greening). We found that harriers’ adult survival in RO (between 1988 and 2005) varied over time and was sensitive to the interaction between the amount of rainfall in the Sahel and the annual mean breeding success, two proxies of prey availability. The occurrence of adverse conditions on breeding and wintering grounds in the same year decreased survival from 0.70–0.77 to 0.48 ± 0.05. Juvenile survival in RO was slightly more sensitive to conditions in Europe than in the Sahel. Unexpectedly, lower survival rates were found in years with higher mean breeding success, suggesting compensatory density feedbacks may operate. By contrast, adult survival in ML, monitored between 1999 and 2017, was higher compared to RO (0.76 ± 0.03 versus 0.66 ± 0.02), remained constant and unaffected by any proxy of prey availability. This difference seems consistent with the fact that harriers in ML experienced better and especially less variable environmental conditions during breeding and wintering seasons compared to RO. Overall, we showed that survival of a migratory bird is sensitive to the level of variability in environmental conditions and that adverse conditions on wintering grounds can amplify the negative effects of conditions during the previous breeding season on birds’ survival.  相似文献   

3.
The response of bird populations to habitat loss   总被引:3,自引:0,他引:3  
Environmental change through altered climate and land use could have a severe impact on bird populations. Predicting the consequences for the size of bird populations is one of the crucial problems for their conservation. We show how a population model based on the behaviour of individuals can be used to predict the consequences of habitat loss. For a wide range of conditions, loss of either wintering or breeding habitat results in population reduction. The approach is then extended to consider the impact of habitat loss in the wintering area on bird species with complex migratory systems. This shows that 'knock-on' effects may occur, so that habitat loss in a wintering area may affect populations which did not initially use that area. The ability to alter migration routes in response to environmental change may be crucial to the future viability of populations. Using a simple model combining genetics and population dynamics, we show that aspects of the biology of a species may affect whether or not its migration strategy is flexible enough to shift in response to habitat change. Some species may be able to adopt new migration routes and avoid the catastrophic consequences of habitat loss in traditional wintering areas; however, other species may lack this flexibility and may suffer severe population declines as a consequence.  相似文献   

4.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   

5.
Anthropogenic habitat loss and climate change are among the major threats to biodiversity. Bioclimatic zones such as the boreal and arctic regions are undergoing rapid environmental change, which will likely trigger changes in wildlife communities. Disentangling the effects of different drivers of environmental change on species is fundamental to better understand population dynamics under changing conditions. Therefore, in this study we investigate the synergistic effect of winter and summer weather conditions and habitat type on the abundance of 17 migratory boreal waterbird species breeding in Finland using three decades (1986–2015) of count data. We found that above‐average temperatures and precipitations across the western and northern range of the wintering grounds have a positive impact on breeding numbers in the following season, particularly for waterbirds breeding in eutrophic wetlands. Conversely, summer temperatures did not seem to affect waterbird abundance. Moreover, waterbird abundance was higher in eutrophic than in oligotrophic wetlands, but long term trends indicated that populations are decreasing faster in eutrophic than in oligotrophic wetlands. Our results suggest that global warming may apparently benefit waterbirds, e.g. by increased winter survival due to more favourable winter weather conditions. However, the observed population declines, particularly in eutrophic wetlands, may also indicate that the quality of breeding habitat is rapidly deteriorating through increased eutrophication in Finland which override the climatic effects. The findings of this study highlight the importance of embracing a holistic approach, from the level of a single catchment up to the whole flyway, in order to effectively address the threats that waterbirds face on their breeding as well as wintering grounds.  相似文献   

6.
Background and Aims Local climatic adaptation can influence species' response to climate change. If populations within a species are adapted to local climate, directional change away from mean climatic conditions may negatively affect fitness of populations throughout the species' range. Methods Adaptive differentiation to temperature was tested for in American ginseng (Panax quinquefolius) by reciprocally transplanting individuals from two populations, originating at different elevations, among temperature treatments in a controlled growth chamber environment. Fitness-related traits were measured in order to test for a population × temperature treatment interaction, and key physiological and phenological traits were measured to explain population differences in response to temperature. Key Results Response to temperature treatments differed between populations, suggesting genetic differentiation of populations. However, the pattern of response of fitness-related variables generally did not suggest 'home temperature' advantage, as would be expected if populations were locally adapted to temperature alone. Conclusions Failure consistently to detect a 'home temperature' advantage response suggests that adaptation to temperature is complex, and environmental and biotic factors that naturally covary with temperature in the field may be critical to understanding the nature of adaptation to temperature.  相似文献   

7.
Populations of migratory songbirds in western Europe show considerable variation in population trends between species and regions. The demographic and environmental causes of these large‐scale patterns are poorly understood. Using data from Constant Effort mist‐netting studies, we investigated relationships between changes in abundance, adult survival and seasonal weather conditions among 35 western European populations of eight species of migratory warblers (Sylviidae). We used cross‐species and within‐species comparisons to assess whether annual variation in survival was correlated with weather conditions during passage or winter. We estimated survival using CJS mark‐recapture models accounting for variation in the proportion of transient individuals and recapture rates. Species wintering in the humid bioclimatic zone of western Africa had significantly higher annual survival probabilities than species wintering in the arid bioclimatic zone of Africa (the Sahel). Rainfall in the Sahel was positively correlated with survival in at least some populations of five species. We found substantially fewer significant relationships with indices of weather during the autumn and spring passage periods, which may be due to the use of broad‐scale indices. Annual population changes were correlated with adult survival in all of our study species, although species undergoing widespread declines showed the weakest relationships.  相似文献   

8.
Several species of migratory swifts breed in the Western Palearctic, but they differ in reproductive traits and nonbreeding areas explored in Africa. We examined survival and recapture probabilities of two species of swifts by capture–mark–recapture data collected in northern Italy (Pallid Swift Apus pallidus in Carmagnola, Turin, and Common Swift Apus apus in Guiglia, Modena) in the breeding season (May–July). Apparent survival rates were relatively high (>71%), comparable to other studies of European swifts, but showed marked annual variations. We used geolocators to establish the exact wintering areas of birds breeding in our study colonies. Common Swifts explored the Sahel zone during migration and spent the winter in SE Africa, while the Pallid Swifts remained in the Sahel zone for a longer time, shifting locations southeast down to Cameroun and Nigeria later in winter. These movements followed the seasonal rains from north to south (October to December). In both species, we found large yearly differences in survival probabilities related to different climatic indices. In the Pallid Swift, wintering in Western Africa, the Sahel rainfall index best explained survival, with driest seasons associated with reduced survival. In the Common Swift, wintering in SE Africa, the El Niño–Southern Oscillation (ENSO) cycle performed significantly better than Sahel rainfall or North Atlantic Oscillation (NAO). Extreme events and precipitation anomalies in Eastern Africa during La Niña events resulted in reduced survival probabilities in Common Swifts. Our study shows that the two species of swifts have similar average annual survival, but their survival varies between years and is strongly affected by different climatic drivers associated with their respective wintering areas. This finding could suggest important ecological diversification that should be taken into account when comparing survival and area use of similar species that migrate between temperate breeding areas and tropical wintering areas.  相似文献   

9.
1. Understanding the impact of environmental variability on migrating species requires the estimation of sequential abiotic effects in different geographic areas across the life cycle. For instance, waterfowl (ducks, geese and swans) usually breed widely dispersed throughout their breeding range and gather in large numbers in their wintering headquarters, but there is a lack of knowledge on the effects of the sequential environmental conditions experienced by migrating birds on the long-term community dynamics at their wintering sites. 2. Here, we analyse multidecadal time-series data of 10 waterfowl species wintering in the Guadalquivir Marshes (SW Spain), the single most important wintering site for waterfowl breeding in Europe. We use a multivariate state-space approach to estimate the effects of biotic interactions, local environmental forcing during winter and large-scale climate during breeding and migration on wintering multispecies abundance fluctuations, while accounting for partial observability (observation error and missing data) in both population and environmental data. 3. The joint effect of local weather and large-scale climate explained 31·6% of variance at the community level, while the variability explained by interspecific interactions was negligible (<5%). In general, abiotic conditions during winter prevailed over conditions experienced during breeding and migration. Across species, a pervasive and coherent nonlinear signal of environmental variability on population dynamics suggests weaker forcing at extreme values of abiotic variables. 4. Modelling missing observations through data augmentation increased the estimated magnitude of environmental forcing by an average 30·1% and reduced the impact of stochasticity by 39·3% when accounting for observation error. Interestingly however, the impact of environmental forcing on community dynamics was underestimated by an average 15·3% and environmental stochasticity overestimated by 14·1% when ignoring both observation error and data augmentation. 5. These results provide a salient example of sequential multiscale environmental forcing in a major migratory bird community, which suggests a demographic link between the breeding and wintering grounds operating through nonlinear environmental effects. Remarkably, this study highlights that modelling observation error in the environmental covariates of an ecological model can be proportionally more important than modelling this source of variance in the population data.  相似文献   

10.
In long‐lived species, population growth rate is highly sensitive to changes in adult survival. Despite the growing concerns regarding recent climate changes, few studies have investigated the effect of climatic conditions on survival in long‐lived wildlife that are either resident or breed in the Arctic. In this study, we evaluated the effect of climate across the annual life cycle (breeding, outward migration, wintering, and inward migration) on apparent annual survival of arctic‐breeding peregrine falcons. From 1982 to 2008, peregrine falcons breeding near Rankin Inlet, Nunavut, Canada were monitored, in part, to assess apparent annual survival (the product of true survival and site fidelity) using re‐observations of marked individuals. Our study indicated that apparent annual survival of adult peregrine falcons was correlated with indices of climatic conditions during outward migration (i.e., flight from the Arctic breeding grounds). These climatic indices (fall NAO of the current year and fall NAO with a lag of one year) explained 35% of the temporal variation in apparent annual survival of peregrine falcons. Our results suggest that this top‐predator is vulnerable to weather‐related environmental conditions encountered during fall migration.  相似文献   

11.
Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north–south climatological gradient observed in the Sahel—both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift–induced perturbations can be represented with the aid of a detailed mechanistic model.  相似文献   

12.
A review of indicators of climate change for use in Ireland   总被引:1,自引:0,他引:1  
Impact indicators are systems/organisms, the vitality of which alters in response to changes in environmental condition. The indicators assessed in this review fall within the impact category of the driver-pressure-state-impact-response (DPSIR) framework. Instrumental records have shown unequivocal changes in climatic conditions over the past 30 years at a global level but impact indicators allow these changes to be monitored at a finer resolution. Our main aim was to review sets of indicators of climate change currently used in various countries and to make recommendations for their use in the Irish environment. We review a preliminary set of climate change impact indicators in five sectors: agriculture; plant and animal distribution patterns; phenology; palaeoecology and human health. Currently, the most effective impact indicators of climate change have proved to be phenological observations of tree developmental stages. The strongest factor limiting the use of indicators is the lack of long-term data sets from which a climatic signal can be extracted.  相似文献   

13.
The Arctic is undergoing rapid and accelerating change in response to global warming, altering biodiversity patterns, and ecosystem function across the region. For Arctic endemic species, our understanding of the consequences of such change remains limited. Spectacled eiders (Somateria fischeri), a large Arctic sea duck, use remote regions in the Bering Sea, Arctic Russia, and Alaska throughout the annual cycle making it difficult to conduct comprehensive surveys or demographic studies. Listed as Threatened under the U.S. Endangered Species Act, understanding the species response to climate change is critical for effective conservation policy and planning. Here, we developed an integrated population model to describe spectacled eider population dynamics using capture–mark–recapture, breeding population survey, nest survey, and environmental data collected between 1992 and 2014. Our intent was to estimate abundance, population growth, and demographic rates, and quantify how changes in the environment influenced population dynamics. Abundance of spectacled eiders breeding in western Alaska has increased since listing in 1993 and responded more strongly to annual variation in first‐year survival than adult survival or productivity. We found both adult survival and nest success were highest in years following intermediate sea ice conditions during the wintering period, and both demographic rates declined when sea ice conditions were above or below average. In recent years, sea ice extent has reached new record lows and has remained below average throughout the winter for multiple years in a row. Sea ice persistence is expected to further decline in the Bering Sea. Our results indicate spectacled eiders may be vulnerable to climate change and the increasingly variable sea ice conditions throughout their wintering range with potentially deleterious effects on population dynamics. Importantly, we identified that different demographic rates responded similarly to changes in sea ice conditions, emphasizing the need for integrated analyses to understand population dynamics.  相似文献   

14.
Predicting the impact of human activities and their derivable consequences, such as global warming or direct wildlife mortality, is increasingly relevant in our changing world. Due to their particular life history traits, long-lived migrants are amongst the most endangered and sensitive group of animals to these harming effects. Our ability to identify and quantify such anthropogenic threats in both breeding and wintering grounds is, therefore, of key importance in the field of conservation biology. Using long-term capture-recapture data (34 years, 4557 individuals) and year-round tracking data (4 years, 100 individuals) of a trans-equatorial migrant, the Cory's shearwater (Calonectris diomedea), we investigated the impact of longline fisheries and climatic variables in both breeding and wintering areas on the most important demographic trait of this seabird, i.e. adult survival. Annual adult survival probability was estimated at 0.914±0.022 on average, declining throughout 1978-1999 but recovering during the last decade (2005-2011). Our results suggest that both the incidental bycatch associated with longline fisheries and high sea surface temperatures (indirectly linked to food availability; SST) increased mortality rates during the long breeding season (March-October). Shearwater survival was also negatively affected during the short non-breeding season (December-February) by positive episodes of the Southern Oscillation Index (SOI). Indirect negative effects of climate at both breeding (SST) and wintering grounds (SOI) had a greater impact on survival than longliner activity, and indeed these climatic factors are those which are expected to present more unfavourable trends in the future. Our work underlines the importance of considering both breeding and wintering habitats as well as precise schedules/phenology when assessing the global role of the local impacts on the dynamics of migratory species.  相似文献   

15.
Modern views on the mechanisms of population dynamics in Palearctic birds wintering in tropical Africa are discussed with regard to the distribution of migrants on the African continent and the influence of external factors on conditions of bird wintering. The data on long-term bird trapping at ten ornithological stations in Europe are analyzed. Among 142 long-term trends in the population dynamics of 18 bird species, 34% are negative, 11% are positive, and the remaining trends lack statistical significance. The proportion of negative trends in each species negatively correlates with the number of birds: the more abundant the species, the lower the probability of its long-term population decline. Population dynamics may largely be determined by environmental conditions in wintering regions. Population studies on ten Palearctic species showed that drastic population declines and even local extinction of birds in recent decades resulted from the dramatic decrease in their survival on African wintering grounds because of insufficient precipitation and, in particular, severe droughts in the Sahel.  相似文献   

16.
The onset of migration in birds is assumed to be primarily under endogenous control in long-distance migrants. Recently, climate changes appear to have been driving a rapid change in breeding area arrival. However, little is known about the climatic factors affecting migratory birds during the migration cycle, or whether recently reported phenological changes are caused by plastic behavioural responses or evolutionary change. Here, we investigate how environmental conditions in the wintering areas as well as en route towards breeding areas affect timing of migration. Using data from 1984 to 2004 covering the entire migration period every year from observatories located in the Middle East and northern Europe, we show that passage of the Sahara Desert is delayed and correlated with improved conditions in the wintering areas. By contrast, migrants travel more rapidly through Europe, and adjust their breeding area arrival time in response to improved environmental conditions en route. Previous studies have reported opposing results from a different migration route through the Mediterranean region (Italy). We argue that the simplest explanation for different phenological patterns at different latitudes and between migratory routes appears to be phenotypic responses to spatial variability in conditions en route.  相似文献   

17.
Empirical work suggest that long‐lived organisms have adopted risk sensitive reproductive strategies where individuals trade the amount of resources spent on reproduction versus survival according to expected future environmental conditions. Earlier studies also suggest that climate affects population dynamics both directly by affecting population vital rates and indirectly through long‐term changes in individual life histories. Using a seasonal and state‐dependent individual‐based model we investigated how environmental variability affects the selection of reproductive strategies and their effect on population dynamics. We found that: (1) dynamic, i.e. plastic, reproductive strategies were optimal in a variable climate. (2) Females in poor and unpredictable climatic regimes allocated fewer available resources in reproduction and more in own somatic growth. This resulted in populations with low population densities, and a high average female age and body mass. (3) Strong negative density dependence on offspring body mass and survival, along with co‐variation between climatic severity and population density, resulted in no clear negative climatic effects on reproductive success and offspring body mass. (4) Time series analyses of population growth rates revealed that populations inhabiting benign environments showed the clearest response to climatic perturbations as high population density prohibited an effective buffering of adverse climatic effects as individuals were not able to gain sufficient body reserves during summer. Regularly occurring harsh winters ‘harvested’ populations, resulting in persistent low densities, and released them from negative density dependent effects, resulting in high rewards for a given resource allocation.  相似文献   

18.
Early‐life demographic traits are poorly known, impeding our understanding of population processes and sensitivity to climate change. Survival of immature individuals is a critical component of population dynamics and recruitment in particular. However, obtaining reliable estimates of juvenile survival (i.e., from independence to first year) remains challenging, as immatures are often difficult to observe and to monitor individually in the field. This is particularly acute for seabirds, in which juveniles stay at sea and remain undetectable for several years. In this work, we developed a Bayesian integrated population model to estimate the juvenile survival of emperor penguins (Aptenodytes forsteri), and other demographic parameters including adult survival and fecundity of the species. Using this statistical method, we simultaneously analyzed capture–recapture data of adults, the annual number of breeding females, and the number of fledglings of emperor penguins collected at Dumont d'Urville, Antarctica, for the period 1971–1998. We also assessed how climate covariates known to affect the species foraging habitats and prey [southern annular mode (SAM), sea ice concentration (SIC)] affect juvenile survival. Our analyses revealed that there was a strong evidence for the positive effect of SAM during the rearing period (SAMR) on juvenile survival. Our findings suggest that this large‐scale climate index affects juvenile emperor penguins body condition and survival through its influence on wind patterns, fast ice extent, and distance to open water. Estimating the influence of environmental covariates on juvenile survival is of major importance to understand the impacts of climate variability and change on the population dynamics of emperor penguins and seabirds in general and to make robust predictions on the impact of climate change on marine predators.  相似文献   

19.
The sensitivity of population trends to the climate and environment is generally considered a species-specific trait. However, evidence that populations may show different responses to the climate and environmental conditions is growing. Whether this differential sensitivity may arise even among neighboring populations remains elusive. We compared the trends of two neighboring populations of the Lesser Kestrel Falco naumanni, using data from a 12-year survey of 158 colonies in Sicily, Italy; the two populations inhabiting a lowland and an highland area, respectively. Population trends were modeled through the TRIM algorithms implemented in R (package rtrim). A reversed U-shaped population trend was observed in the lowland, while the highland population showed oscillations around a stable trend. Sahel rainfall 2 years before each annual survey significantly affected population variation in the lowland, while rainfall in March and an index of primary productivity in the breeding areas affected population variation in the highland. This suggests that the population in the lowland may be limited mainly by winter survival in Sahel, because the lowland may be an optimal breeding area for this species. In contrast, the highland population, which occupies a different part of the climatic niche of the species, may be limited mainly by reproductive output, because rainfall in March and the primary productivity in May could represent prey availability immediately before and during the breeding months. Overall, our findings suggest that population-specific environmental sensitivity might occur even over small (<100 km) geographical scales, highlighting the need for population-specific conservation strategies.  相似文献   

20.
There is an urgent need to understand how climate change will impact on demographic parameters of vulnerable species. Migrants are regarded as particularly vulnerable to climate change; phenological mismatch has resulted in the local decline of one passerine, whilst variations in the survival of others have been related to African weather conditions. However, there have been few demographic studies on trans-Saharan non-passerine migrants, despite these showing stronger declines across Europe than passerines. We therefore analyse the effects of climate on the survival and productivity of common sandpipers Actitis hypoleucos, a declining non-passerine long-distant migrant using 28 years’ data from the Peak District, England. Adult survival rates were significantly negatively correlated with winter North Atlantic Oscillation (NAO), being lower when winters were warm and wet in western Europe and cool and dry in northwest Africa. Annual variation in the productivity of the population was positively correlated with June temperature, but not with an index of phenological mismatch. The 59% population decline appears largely to have been driven by reductions in adult survival, with local productivity poorly correlated with subsequent population change, suggesting a low degree of natal philopatry. Winter NAO was not significantly correlated with adult survival rates in a second, Scottish Borders population, studied for 12 years. Variation in climatic conditions alone does not therefore appear to be responsible for common sandpiper declines. Unlike some passerine migrants, there was no evidence for climate-driven reductions in productivity, although the apparent importance of immigration in determining local recruitment complicates the assessment of productivity effects. We suggest that further studies to diagnose common sandpiper declines should focus on changes in the condition of migratory stop-over or wintering locations. Where possible, these analyses should be repeated for other declining migrants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号