首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups.  相似文献   

2.
3.
4.
5.
6.
7.
The infectious agent of transmissible spongiform encephalopathies (TSE) is believed to comprise, at least in part, the prion protein (PrP). Other molecules can modulate the conversion of the normal PrP(C) into the pathological conformer (PrP(Sc)), but the identity and mechanisms of action of the key physiological factors remain unclear. PrP can bind to nucleic acids with relatively high affinity. Here, we report small-angle X-ray scattering (SAXS) and nuclear magnetic resonance spectroscopy measurements of the tight complex of PrP with an 18 bp DNA sequence. This double-stranded DNA sequence (E2DBS) binds with nanomolar affinity to the full-length recombinant mouse PrP. The SAXS data show that formation of the rPrP-DNA complex leads to larger values of the maximum dimension and radius of gyration. In addition, the SAXS studies reveal that the globular domain of PrP participates importantly in the formation of the complex. The changes in NMR HSQC spectra were clustered in two major regions: one in the disordered portion of the PrP and the other in the globular domain. Although interaction is mediated mainly through the PrP globular domain, the unstructured region is also recruited to the complex. This visualization of the complex provides insight into how oligonucleotides bind to PrP and opens new avenues to the design of compounds against prion diseases.  相似文献   

8.
The prokaryotic tubulin homolog FtsZ polymerizes into a ring structure essential for bacterial cell division. We have used refolded FtsZ to crystallize a tubulin-like protofilament. The N- and C-terminal domains of two consecutive subunits in the filament assemble to form the GTPase site, with the C-terminal domain providing water-polarizing residues. A domain-swapped structure of FtsZ and biochemical data on purified N- and C-terminal domains show that they are independent. This leads to a model of how FtsZ and tubulin polymerization evolved by fusing two domains. In polymerized tubulin, the nucleotide-binding pocket is occluded, which leads to nucleotide exchange being the rate-limiting step and to dynamic instability. In our FtsZ filament structure the nucleotide is exchangeable, explaining why, in this filament, nucleotide hydrolysis is the rate-limiting step during FtsZ polymerization. Furthermore, crystal structures of FtsZ in different nucleotide states reveal notably few differences.  相似文献   

9.
Sulfite oxidase deficiency is a lethal genetic disease that results from defects either in the genes encoding proteins involved in molybdenum cofactor biosynthesis or in the sulfite oxidase gene itself. Several point mutations in the sulfite oxidase gene have been identified from patients suffering from this disease worldwide. Although detailed biochemical analyses have been carried out on these mutations, no structural data could be obtained because of problems in crystallizing recombinant human and rat sulfite oxidases and the failure to clone the chicken sulfite oxidase gene. We synthesized the gene for chicken sulfite oxidase de novo, working backward from the amino acid sequence of the native chicken liver enzyme by PCR amplification of a series of 72 overlapping primers. The recombinant protein displayed the characteristic absorption spectrum of sulfite oxidase and exhibited steady state and rapid kinetic parameters comparable with those of the tissue-derived enzyme. We solved the crystal structures of the wild type and the sulfite oxidase deficiency-causing R138Q (R160Q in humans) variant of recombinant chicken sulfite oxidase in the resting and sulfate-bound forms. Significant alterations in the substrate-binding pocket were detected in the structure of the mutant, and a comparison between the wild type and mutant protein revealed that the active site residue Arg-450 adopts different conformations in the presence and absence of bound sulfate. The size of the binding pocket is thereby considerably reduced, and its position relative to the cofactor is shifted, causing an increase in the distance of the sulfur atom of the bound sulfate to the molybdenum.  相似文献   

10.
Structural insights into histone lysine demethylation   总被引:1,自引:0,他引:1  
  相似文献   

11.
Structural insights into ABC transporter mechanism   总被引:1,自引:0,他引:1  
ATP-binding cassette (ABC) transporters utilize the energy from ATP hydrolysis to transport substances across the membrane. In recent years, crystal structures of several ABC transporters have become available. These structures show that both importers and exporters oscillate between two conformations: an inward-facing conformation with the substrate translocation pathway open to the cytoplasm and an outward-facing conformation with the translocation pathway facing the opposite side of the membrane. In this review, conformational differences found in the structures of homologous ABC transporters are analyzed to understand how alternating-access is achieved. It appears that rigid-body rotations of the transmembrane subunits, coinciding with the opening and closing of the nucleotide-binding subunits, couples ATP hydrolysis to substrate translocation.  相似文献   

12.
New metalloprotein structures continue to provide discoveries regarding protein-metal ion partnerships. Many recent structures reveal metal ion sites that control or are controlled by protein conformational change, including modulation by alternative splice variants and striking conformational changes. Only a few novel catalytic metal centers have been revealed recently, such as the surprising Ni-hook superoxide dismutase catalytic site and the cubane-like Mn(3)CaO(4) photosynthetic oxygen-evolving center. However, important new variations on old heme themes, breakthroughs in the fields of metal ion regulation and metallochaperones, and captivating insights into partnerships between proteins and minerals have also been described. Very high resolution metal site structures and metalloprotein design will be increasingly important in order to leverage the wealth of native metalloprotein structures into a deep understanding of metal ion site specificity and activity.  相似文献   

13.
G-protein-coupled receptors (GPCRs) are the largest family of eukaryotic plasma membrane receptors, and are responsible for the majority of cellular responses to external signals. GPCRs share a common architecture comprising seven transmembrane (TM) helices. Binding of an activating ligand enables the receptor to catalyze the exchange of GTP for GDP in a heterotrimeric G protein. GPCRs are in a conformational equilibrium between inactive and activating states. Crystallographic and spectroscopic studies of the visual pigment rhodopsin and two beta-adrenergic receptors have defined some of the conformational changes associated with activation.  相似文献   

14.
Structural insights into the clathrin coat   总被引:2,自引:0,他引:2  
Clathrin is a cytoplasmic protein best known for its role in endocytosis and intracellular trafficking. The diverse nature of clathrin has recently become apparent, with strong evidence available suggesting roles in both chromosome segregation and reassembly of the Golgi apparatus during mitosis. Clathrin functions as a heterohexamer, adopting a three-legged triskelion structure of three clathrin light chains and three heavy chains. During endocytosis clathrin forms a supportive network about the invaginating membrane, interacting with itself and numerous adapter proteins. Advances in the field of structural biology have led us to a greater understanding of clathrin in its assembled state, the clathrin lattice. Combining techniques such as X-ray crystallography, NMR, and cryo-electron microscopy has allowed us to piece together the intricate nature of clathrin-coated vesicles and the interactions of clathrin with its many binding partners. In this review I outline the roles of clathrin within the cell and the recent structural advances that have improved our understanding of clathrin-clathrin and clathrin-protein interactions.  相似文献   

15.
16.
17.
Structural insights into SARS coronavirus proteins   总被引:11,自引:0,他引:11  
  相似文献   

18.
Structural characterization of Escherichia coli sialic acid synthase   总被引:7,自引:0,他引:7  
Wnt-1, the vertebrate counterpart of the Drosophila wingless gene, plays an important role in the early morphogenesis of neural tissues. In this report, we have shown that overexpression of Wnt-1 can direct embryonic carcinoma P19 cells to differentiate into neuron-like cells in the absence of retinoic acid. Immunocytochemistry showed that these cells expressed neuronal markers, such as the neurofilament (NF) and microtubule-associated protein 2 (MAP2), but failed to express the glial cell marker, glial fibrillary acidic protein (GFAP). RT-PCR revealed that two basic helix-loop-helix (bHLH) genes, Mash-1 and Ngn-1, were up-regulated during the differentiation stage of Wnt-1-overexpressing P19 cells. These results suggest that the Wnt-1 gene promotes neuronal differentiation and inhibits gliogenesis during the neural differentiation of P19 cells, and that neural bHLH genes might be involved in this process.  相似文献   

19.
A number of highly specialized DNA polymerases with the ability to replicate through DNA lesions have been identified. In this issue of Structure, Nair et al. show how one such polymerase, yeast Rev1, accomplishes the DNA lesion bypass task.  相似文献   

20.
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号