首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
在脑缺血再灌注损伤中,自由基发挥着重要作用。脑缺血及再灌注可产生大量的自由基,随着这些自由基的聚集,会引发一系列的分子级联反应,从而增加血脑屏障的通透性,诱发脑水肿、出血、炎症反应及细胞死亡。以一氧化氮(NO)及过氧亚硝基阴离子(ONOO-)为代表的活性氮(reactive nitrogen species,RNS),是自由基的重要组成部分,它们在脑缺血再灌注损伤中作用显著。一方面,活性氮能激活基质金属蛋白酶(MMPs),破坏血脑屏障。MMPs作为一大类含2价锌离子的水解酶,其激活可以降解脑血管及神经元细胞外基质。脑缺血再灌注损伤产生NO和ONOO-,它们均可以通过激活MMPs,降解紧密连接蛋白,从而破坏血脑屏障。另一方面,近期研究发现,活性氮也参与了脑缺血后神经再生及修复的调节过程。因此,了解这些活性小分子在血脑屏障破坏及神经再生中的复杂生物活性将很有意义。小窝蛋白1(Caveolin-1)就是活性氮自由基的重要靶分子,它是一种细胞表面的穴样内陷(caveolae)中的膜蛋白,可以通过抑制MMPs的激活保护血脑屏障的完整性。下调Caveolin-1的表达将引起血脑屏障的破坏。脑缺血所产生的NO能下调Caveolin-1的表达,而Caveolin-1的下调,能引起NO合酶的增加,促进生成更多的NO。活性氮与Caveolin-1互相作用,形成了一个反馈回路,通过激活MMPs而造成血脑屏障的不断破坏。此外,Caveolin-1通过调节不同的信号通路,抑制神经干细胞的增长及向神经元分化。因此,活性氮也很可能通过调节Caveolin-1及其他信号通路调控神经再生。在这篇文章中,我们对活性氮在血脑屏障及神经再生中的近期研究进展进行了综述。我们认为,活性氮可能在脑缺血再灌注中起双重作用,既是细胞毒性分子,亦可能是神经再生中的重要信号分子,其作用与其在神经元、内皮细胞及其微环境中产生的量有重要的关系。  相似文献   

2.
基质金属蛋白酶是一组金属依赖性的蛋白内切酶家族,可对细胞外基质进行特异的降解,在生理和璃理过程中都发挥着重要作用。已有许多有关基质金属蛋白酶在中枢神经系统的作用的研究报道,本文对基质金属蛋白酶在脑缺血和脑出血等脑血管的急性损伤作用进行了综述,并对进一步研究方向作出展望。  相似文献   

3.
基质金属蛋白酶9(MMP-9)是一种具有降解功能的锌依赖性内肽酶,在神经系统生理发育及病理损伤过程中起重要作用。在缺血性脑卒中过程中,MMP-9通过破坏血脑屏障、促进炎性细胞浸润及炎性因子释放、诱发神经细胞死亡、介导出血转化等诸多机制参与脑组织损伤。本文对MMP-9在缺血性脑卒中的损伤及修复中的作用机制进行综述,以期为缺血性脑卒中提供新的诊疗靶点。  相似文献   

4.
探讨牛黄对原代小鼠口腔成纤维细胞功能的影响,揭示其在溃疡愈合过程中的作用及机制。本试验采用MTT法、氯胺-T法、明胶酶谱分析和酶联免疫反应测定了牛黄对小鼠口腔成纤维细胞增殖、胶原沉积、金属蛋白酶-2、-9活性和基质金属蛋白酶抑制因子-1合成的影响。结果表明牛黄能显著抑制小鼠口腔成纤维细胞的增殖、胶原沉积和金属蛋白酶-2活性,同时也极显著(P<0.01)抑制基质金属蛋白酶抑制因子-1的产生。结果提示牛黄在溃疡愈合过程中不具生肌作用,可能通过抗炎促进溃疡愈合;其抑制胶原合成的机制可能与极显著抑制基质金属蛋白酶抑制因子-1有关。  相似文献   

5.
基质金属蛋白酶与中枢神经系统感染   总被引:1,自引:0,他引:1  
基质金属蛋白酶(MMPs)是一组合锌的能降解细胞外基质的中性蛋白酶家族.目前认为MMPs尤其是明胶酶(MMP-2,MMP-9)与中枢神经系统感染关系密切.通常它们以酶原的形式存在,一旦活化,则迅速攻击血脑屏障,降解基底膜的一些基质蛋白,破坏内皮细胞的紧密连接蛋白,促进脑水肿的形成和炎细胞的浸润.近年来研究发现,中枢神经系统感染后MMPs表达增加.导致血脑屏障损害及血管源性脑水肿,并参与中枢神经系统免疫反应,促进感染的病理生理过程.  相似文献   

6.
骨基质的有机成分主要为骨Ⅰ型胶原基质金属蛋白酶,该酶是细胞外基质降解的重要酶类;基质金属蛋白酶抑制因子则是基质金属蛋白酶活性的抑制剂,它们均为骨代谢过程中的重要标志性物质。本文通过查阅文献资料,对生理、部分病理状态及运动干预条件下,骨基质的Ⅰ型胶原和基质金属蛋白酶及其抑制因子的变化情况进行综述,并对其变化的机制予以阐释。  相似文献   

7.
基质金属蛋白酶   总被引:42,自引:0,他引:42  
基质金属蛋白酶是一类分解细胞外基质组分的锌蛋白酶⒚它们在有机体生长发育中的细胞外基质逆转与重塑以及疾病中的病理损害起着极为重要的作用⒚基质金属蛋白酶的表达和活性在不同细胞水平受到严密调控,如细胞因子、生长因子以及激素的调节⒚基质金属蛋白酶以酶原形式分泌,随后被其它蛋白酶如胞浆素或非蛋白酶类化学物质如有机汞所激活⒚所有基质金属蛋白酶都受到天然抑制剂 金属蛋白酶组织抑制剂所抑制⒚两者的不平衡导致许多疾病的发生,如肿瘤侵入及转移⒚合成基质金属蛋白酶组织抑制剂所抑制,如 M arim astat 能控制肿瘤转移的发生及进一步扩散⒚本文将对基质金属蛋白酶的特征、分子区域结构、底物特性、激活机制、调控方式等方面进行最新概述⒚  相似文献   

8.
缺血性脑卒中发生时,基质金属蛋白酶等效应分子以及炎症反应、氧化应激等会破坏血脑屏障,增加缺血区有害产物进入脑组织, 产生脑水肿,引起继发性脑损伤。所以,保护与维持脑微血管内皮屏障功能的完整性,是脑卒中防治的重要策略之一。从调节效应分子 和相关信号通路的角度出发,综述中药活性成分对模拟缺血性脑卒中的体内外脑微血管内皮屏障功能损伤模型的改善作用研究进展,以 期为进一步阐释中药活性成分防治缺血性脑卒中的作用机制以及新药创制提供参考和依据。  相似文献   

9.
全身炎症反应综合征是引发多器官功能障碍综合征的主要原因,而其发生的关键环节是血管内皮细胞的损伤。内皮细胞外基质是内皮细胞生存的依托,其主要成分为IV型胶原。基质金属蛋白酶-9可以降解IV型胶原,破坏内皮细胞外基膜。本文综述了基质金属蛋白酶-9与全身炎症反应的关系。  相似文献   

10.
基质金属蛋白酶是一类可降解细胞外基质的蛋白酶,基质金属蛋白酶-2和-9为明胶酶,可降解细胞外基质中的胶原蛋白及弹性蛋白,其动态平衡对维持细胞外基质的稳定具有重要意义。主动脉的细胞外基质是主动脉中层重要的组成部分,细胞外基质成分的改变可导致主动脉中层结构的损伤,在主动脉疾病的发生、发展过程中起着重要作用。主动脉基质金属蛋白酶-2和-9的表达失衡可引起主动脉中层细胞外基质的降解,导致主动脉中层结构的损伤,从而促进主动脉疾病的发生。同时,主动脉疾病也可导致血浆中MMP-2、MMP-9浓度的升高。本文对近年来基质金属蛋白酶与主动脉疾病相关性的研究及进展作一综述,为心血管疾病发生机制的研究和治疗提供文献依据。  相似文献   

11.
Gu Y  Zheng G  Xu M  Li Y  Chen X  Zhu W  Tong Y  Chung SK  Liu KJ  Shen J 《Journal of neurochemistry》2012,120(1):147-156
The roles of caveolin-1 (cav-1) in regulating blood-brain barrier (BBB) permeability are unclear yet. We previously reported that cav-1 was down-regulated and the production of nitric oxide (NO) induced the loss of cav-1 in focal cerebral ischemia and reperfusion injury. The present study aims to address whether the loss of cav-1 impacts on BBB permeability and matrix metalloproteinases (MMPs) activity during cerebral ischemia-reperfusion injury. We found that focal cerebral ischemia-reperfusion down-regulated the expression of cav-1 in isolated cortex microvessels, hippocampus, and cortex of ischemic brain. The down-regulation of cav-1 was correlated with the increased MMP-2 and -9 activities, decreased tight junction (TJ) protein zonula occludens (ZO)-1 expression and enhanced BBB permeability. Treatment of N(G) -nitro-L-arginine methyl ester [L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor] reserved the expression of cav-1, inhibited MMPs activity, and reduced BBB permeability. To elucidate the roles of cav-1 in regulating MMPs and BBB permeability, we used two approaches including cav-1 knockdown in cultured brain microvascular endothelial cells (BMECs) in vitro and cav-1 knockout (KO) mice in vivo. Cav-1 knockdown remarkably increased MMPs activity in BMECs. Meanwhile, with focal cerebral ischemia-reperfusion, cav-1 deficiency mice displayed higher MMPs activities and BBB permeability than wild-type mice. Interestingly, the effects of L-NAME on MMPs activity and BBB permeability was partly reversed in cav-1 deficiency mice. These results, when taken together, suggest that cav-1 plays important roles in regulating MMPs activity and BBB permeability in focal cerebral ischemia and reperfusion injury. The effects of L-NAME on MMPs activity and BBB permeability are partly mediated by preservation of cav-1.  相似文献   

12.
13.
Although propofol has been reported to offer neuroprotection against cerebral ischemia injury, its impact on cerebral edema following ischemia is not clear. The objective of this investigation is to evaluate the effects of propofol post-treatment on blood–brain barrier (BBB) integrity and cerebral edema after transient cerebral ischemia and its mechanism of action, focusing on modulation of aquaporins (AQPs), matrix metalloproteinases (MMPs), and hypoxia inducible factor (HIF)-1α. Cerebral ischemia was induced in male Sprague–Dawley rats (n = 78) by occlusion of the right middle cerebral artery for 1 h. For post-treatment with propofol, 1 mg kg?1 min?1 of propofol was administered for 1 h from the start of reperfusion. Nineteen rats undergoing sham surgery were also included in the investigation. Edema and BBB integrity were assessed by quantification of cerebral water content and extravasation of Evans blue, respectively, following 24 h of reperfusion. In addition, the expression of AQP-1, AQP-4, MMP-2, and MMP-9 was determined 24 h after reperfusion and the expression of HIF-1α was determined 8 h after reperfusion. Propofol post-treatment significantly reduced cerebral edema (P < 0.05) and BBB disruption (P < 0.05) compared with the saline-treated control. The expression of AQP-1, AQP-4, MMP-2, and MMP-9 at 24 h and of HIF-1α at 8 h following ischemia/reperfusion was significantly suppressed in the propofol post-treatment group (P < 0.05). Propofol post-treatment attenuated cerebral edema after transient cerebral ischemia, in association with reduced expression of AQP-1, AQP-4, MMP-2, and MMP-9. The decreased expression of AQPs and MMPs after propofol post-treatment might result from suppression of HIF-1α expression.  相似文献   

14.
The blood-brain barrier (BBB) is essential for the normal function of the central nervous system. The pathological conditions induced by brain diseases including cerebral ischemia result in the alteration of BBB integrity. This alteration of BBB is relieved by mild hypothermia that has been regarded as an effective therapy for brain injury. Experimental fat embolism by intra-arterial administration of fatty acid induces reversible dysfunction of BBB and is considered as a beneficial method for the research on BBB disruption. However, the implication of hypothermia on the fatty acid-induced BBB disruption is not clear yet. In this study, we aim to investigate the effect of mild hypothermia on BBB disruption by comparing the changes of brain inflammation, free radical production, and matrix metalloproteinases (MMPs) caused by cerebral fatty acid infusion between normothermic (37°C) and hypothermic (33°C) groups. Oleic acid infusion into the carotid artery induced the increase of BBB permeability, which was inhibited by mild hypothermia. Neutrophils were infiltrated and intercellular adhesion molecule-1 (ICAM-1) expression was increased in the vascular structures in the affected brain tissue of normothermic rats at 24 hrs following oleic acid administration. Inducible nitric oxide synthase (iNOS) and nitro-tyrosine immunoreactivities were also observed in the normothermic group. The expression of matrix metalloproteinase (MMP)-2, 3, and 13 were upregulated predominantly in the oleic acid-treated brain of the normothermic rats. In mild hypothermic condition, neutrophil infiltration and ICAM-1 expression were attenuated, whereas the inductions of iNOS, nitrotyrosine and MMPs except MMP3 were not affected. Therefore, we suggest that mild hypothermia contributes to the protective effect on oleic acid-induced BBB damage via reducing neutrophil infiltration and brain inflammation.  相似文献   

15.
There is substantial evidence linking blood-brain barrier (BBB) failure during cerebral ischemia to matrix metalloproteinases (MMP). BBB function may be affected by loss of shear stress under normoxia/normoglycemia, as during cardiopulmonary bypass procedures. The present study used an in vitro flow-perfused BBB model to analyze the individual contributions of flow, cytokine levels, and circulating blood leukocytes on the release/activity of MMP-9, MMP-2, and their endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs), TIMP-1, and TIMP-2. The presence of circulating blood leukocytes under normoxic/normoglycemic flow cessation/reperfusion significantly increased the luminal levels of MMP-9 and activity of MMP-2, accompanied by partial reduction of TIMP-1, complete reduction of TIMP-2 and increased BBB permeability. These changes were not observed during constant flow with circulating blood leukocytes, or after normoxic/normoglycemic or hypoxic/hypoglycemic flow cessation/reperfusion without circulating blood leukocytes. The addition of anti-IL-6 or anti-TNF- antibody in the lumen before reperfusion suppressed the levels of MMP-9 and activity of MMP-2, had no effect on TIMP-1, and completely restored TIMP-2 and BBB integrity. Injection of TIMP-2 in the lumen before reperfusion prevented the activation of MMP-2 and BBB permeability. These data indicate that blood leukocytes and loss of flow are major factors in the activation of MMP-2, and that cytokine-mediated differential regulation of TIMP-1 and TIMP-2 may contribute significantly to BBB failure. shear stress; inflammation; matrix metalloproteinases  相似文献   

16.
Mitochondrial permeability transition in acute neurodegeneration   总被引:12,自引:0,他引:12  
Friberg H  Wieloch T 《Biochimie》2002,84(2-3):241-250
Acute neurodegeneration in man is encountered during and following stroke, transient cardiac arrest, brain trauma, insulin-induced hypoglycemia and status epilepticus. All these severe clinical conditions are characterized by neuronal calcium overload, aberrant cell signaling, generation of free radicals and elevation of cellular free fatty acids, conditions that favor activation of the mitochondrial permeability transition pore (mtPTP). Cyclosporin A (CsA) and its analog N-methyl-valine-4-cyclosporin A (MeValCsA) are potent blockers of the mtPTP and protect against neuronal death following excitotoxicity and oxygen glucose deprivation. Also, CsA and MeValCsA diminish cell death following cerebral ischemia, trauma, and hypoglycemia. Here we present data that strongly imply the mtPT in acute neurodegeneration in vivo. Compounds that readily pass the blood-brain-barrier (BBB) and block the mtPT may be neuroprotective in stroke.  相似文献   

17.
目的:研究铜纳米颗粒(copper nanoparticle,Cu-nps)对缺血性卒中后神经血管单元(neurovascular units,NVU)的保护作用。方法:采用加热搅拌法合成Cu-nps。体内建立大鼠短暂大脑中动脉阻塞/再灌注模型(transient middle cerebral artery occlusion / reperfusion,tMCAO),实验分为正常组(sham)、模型组(tMCAO)、给药组(Cu-nps),检测各组脑梗死面积、神经凋亡情况、血脑屏障(blood-brain barrier,BBB)完整性以及相关蛋白表达。结果:制备出的Cu-nps以Cu2+、80 nm左右的粒径均匀存在,具有良好的生物相容性。Cu-nps靶向脑缺血部位受损神经元,提高神经元细胞活力,降低活性氧,减少神经元凋亡和脑梗死面积,降低伊文思蓝染料渗漏量和炎症因子表达。结论:Cu-nps可以减少氧化应激,保护BBB完整性,降低神经胶质细胞活化,保护NVU功能,从而降低脑缺血再灌注损伤。  相似文献   

18.

Background

Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context.

Methodology/Principal Findings

We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by strong caspase-3 activation in brain endothelial cells (BEC). Surprisingly only few DNA-fragmentations were detected with TUNEL stainings in BEC. Z-DEVD-fmk, an irreversible caspase-3 inhibitor, partly blocked TJ disruptions and was protective on trans-endothelial electrical resistance.

Conclusions/Significance

Our data provide evidence that caspase-3 is rapidly activated during acute cerebral ischemia predominantly without triggering DNA-fragmentation in BEC. Further we detected fast TJ protein disruptions which could be partly blocked by caspase-3 inhibition with Z-DEVD-fmk. We suggest that the basis for clinically relevant BBB breakdown in form of TJ disruptions is initiated within minutes during ischemia and that caspase-3 contributes to this process.  相似文献   

19.
Background and purpose: HSPA12B is a newly discovered member of the Hsp70 family proteins. This study investigated the effects of HSPA12B on focal cerebral ischemia/reperfusion (I/R) injury in mice. Methods: Transgenic mice overexpressing human HSPA12B (Tg) and wild-type littermates (WT) were subjected to 60 min of middle cerebral artery occlusion to induce ischemia and followed by reperfusion (I/R). Neurological deficits, infarct volumes and neuronal death were examined at 6 and 24 hrs after reperfusion. Blood–brain-barrier (BBB) integrity and activated cellular signaling were examined at 3 hrs after reperfusion. Results: After cerebral I/R, Tg mice exhibited improvement in neurological deficits and decrease in infarct volumes, when compared with WT I/R mice. BBB integrity was significantly preserved in Tg mice following cerebral I/R. Tg mice also showed significant decreases in cell injury and apoptosis in the ischemic hemispheres. We observed that overexpression of HSPA12B activated PI3K/Akt signaling and suppressed JNK and p38 activation following cerebral I/R. Importantly, pharmacological inhibition of PI3K/Akt signaling abrogated the protection against cerebral I/R injury in Tg mice. Conclusions: The results demonstrate that HSPA12B protects the brains from focal cerebral I/R injury. The protective effect of HSPA12B is mediated though a PI3K/Akt-dependent mechanism. Our results suggest that HSPA12B may have a therapeutic potential against ischemic stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号