首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulatory function of metabotropic glutamate type 1 (mGlu1) receptors plays a crucial role in the pathophysiology of some neurological disorders, including schizophrenia and epilepsy. In this study, the expression of mGlu1α receptors in the thalamic nuclei was assessed during development of absence seizures in the WAG/Rij rats, a valid genetic animal model of absence epilepsy. In addition, the effect of pharmacological modulation of mGlu1α receptors in the laterodorsal (LD) nucleus of the thalamus on the characteristic features of bioelectrical brain activities in the WAG/Rij rats was assessed. The expression of mGlu1α receptors in the LD was assessed in four experimental groups of both WAG/Rij and Wistar rats with 2 and 6 months of age. Agonist and antagonist of mGlu1α receptors were infused in LD in the six months old WAG/Rij (epileptic) rats. The protein level of mGlu1α receptors in the thalamus of the 6-month-old WAG/Rij rats was lower than non-epileptic animals. In addition, the distribution of mGlu1α receptors in different thalamic nuclei was lower in the 6-month-old WAG/Rij compared to age-matched Wistar rats. The gene expression of mGlu1α receptor was also significantly lower in 6-month-old WAG/Rij rats in the LD compared to other animal groups. The microinjection of mGlu1α receptors agonist and antagonist in the LD reduced the duration of spike-wave discharges (SWDs) and increased the amplitude and duration of SWDs, respectively, in 6-month-old WAG/Rij rats. The alterations of mGlu1α receptors expression in the thalamus of epileptic WAG/Rij rats as well as its modulatory effects in the generation of SWDs suggest the potential of mGlu1 receptors as a therapeutic target in absence epilepsy.  相似文献   

2.
Social isolation of rats for 30 days immediately after weaning results in marked decreases in the cerebrocortical and plasma concentrations of pregnenolone, progesterone, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC), as well as a moderate increase in the plasma concentration of corticosterone. This mildly stressful condition has now been shown to increase the sensitivity of rats to the effect of acute ethanol administration on the cerebrocortical and plasma concentrations of neuroactive steroids. The percentage increases in the brain and plasma concentrations of pregnenolone, progesterone, 3alpha,5alpha-TH PROG, and 3alpha,5alpha-TH DOC, apparent 20 min after a single intraperitoneal injection of ethanol (1 g/kg), were thus markedly greater in isolated rats than in group-housed animals. A subcutaneous injection of isoniazid (300 mg/kg) also induced greater percentage increases in the concentrations of these steroids in isolated rats than in group-housed animals. These results suggest that mild chronic stress, such as that induced by social isolation, enhances the steroidogenic effect of ethanol, a drug abused by humans under stress or affected by neuropsychiatric disorders. Social isolation also induced hyper-responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis, as was apparent after reduction of GABA-mediated inhibitory tone by isoniazid administration.  相似文献   

3.
Social isolation of rats for 30 days immediately after weaning reduces the cerebrocortical and plasma concentrations of progesterone, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC). The percentage increases in the brain and plasma concentrations of these neuroactive steroids apparent 30 min after intraperitoneal injection of the peripheral benzodiazepine receptor (PBR) ligand CB 34 (25 mg/kg) have now been shown to be markedly greater in isolated rats than in group-housed controls. The CB 34-induced increase in the abundance of 3alpha,5alpha-TH PROG was more pronounced in the brain than in the plasma of isolated rats. Analysis of [3H]PK 11195 binding to membranes prepared from the cerebral cortex, adrenals, or testis revealed no significant difference in either the maximal number of binding sites for this PBR ligand or its dissociation constant between isolated and group-housed animals. Social isolation also induced a small but significant decrease in the plasma concentration of adrenocorticotropic hormone. Moreover, CB 34 increased the plasma concentration of this hormone to a greater extent in isolated rats than in group-housed animals. The persistent decrease in the concentrations of neuroactive steroids induced by social isolation might thus be due to an adaptive decrease in the activity either of the hypothalamic-pituitary-adrenal axis or of PBRs during the prolonged stress, reflecting a defense mechanism to limit glucocorticoid production. The larger increase in neuroactive steroid concentrations induced by CB 34 and the enhanced pituitary response to this compound in isolated rats indicate that this mild stressor increases the response of PBRs.  相似文献   

4.
In the WAG/Rij rat, a model for human absence epilepsy, spike-wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca(2+) channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of alpha(1)-subunits of one or more high voltage-activated Ca(2+) channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3- and 6-month-old WAG/Rij rats with nonepileptic, age-matched control rats. By immunocytochemistry, the expressions of alpha(1)1.3-, alpha(1)2.1-, alpha(1)2.2-, and alpha(1)2.3-subunits were shown in both strains, demonstrating the presence of Ca(v)1.3, Ca(v)2.1, Ca(v)2.2, and Ca(v)2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Ca(v)2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed.  相似文献   

5.
WAG/Rij rats, a genetic animal model of absence epilepsy with comorbidity of depression, exhibit behavioral depression‐like symptoms and spontaneous generalized spike‐wave discharges (SWDs) in the EEG at the age of 6 to 8 months. The aim of the present study was to test the hypothesis that maternal care is an environmental factor which, along with genetic predisposition, may contribute to the expression of absence seizures and depression‐like comorbidity later in life. To achieve this, a cross‐fostering procedure was used. EEG and behavior in the forced swimming test were analyzed in WAG/Rij and Wistar offspring reared by their own mothers (non‐cross‐fostered), foster mothers of the same strain (in‐fostered) or another strain (cross‐fostered) at the age of 7 to 8 months. Maternal care and forced swimming test behavior were assessed in the dams. WAG/Rij mothers showed depression‐like behavior and reduced maternal care irrespective of litter size and litter composition (own or foster pups) compared with Wistar dams. WAG/Rij offspring reared by Wistar dams with a high level of maternal care exhibited less and shorter SWDs and reduced depression‐like comorbidity in adulthood compared with age‐matched WAG/Rij offspring reared by their own or foster WAG/Rij mothers with a low level of maternal care. Moreover, rearing by Wistar mothers delayed the onset of absence epilepsy in WAG/Rij rats. Adoption by WAG/Rij dams did not change EEG and behavior in Wistar rats. Our study demonstrates that improvement of early care‐giving environment can be used as a disease‐modifying treatment to counteract epileptogenesis and behavioral comorbidities in genetic absence epilepsy.  相似文献   

6.
Although stress can alter the susceptibility of patients and animal models to convulsive epilepsy, little is known about the role of stress and glucocorticoid hormones in absence epilepsy. We measured the basal and acute stress-induced (foot-shocks: FS) concentrations of corticosterone in WAG/Rij rats, non-epileptic inbred ACI rats and outbred Wistar rats. The WAG/Rij strain is a genetic model for absence epilepsy and comorbidity for depression, which originates from the population of Wistar rats and, therefore, shares their genetic background. In a separate experiment, WAG/Rij rats were exposed to FS on three consecutive days. Electroencephalograms (EEGs) were recorded before and after FS, and the number of absence seizures (spike-wave-discharges, SWDs) was quantified. Both WAG/Rij rats and ACI rats exhibited elevated basal levels of corticosterone and a rapid corticosterone increase in response to acute stress. The WAG/Rij rats also displayed the most rapid normalization of corticosterone during the recovery phase compared to that of ACI and Wistar rats. FS had a biphasic effect on SWDs; an initial suppression was followed by an aggravation of the SWDs. By the third day, this aggravation of seizures was present in the hour preceding FS. This increase in SWDs may arise from anticipatory stress about the upcoming FS. Together, these results suggest that the distinct secretion profile of corticosterone found in WAG/Rij rats may contribute to the severity of the epileptic phenotype. Although the acute stressor results in an initial suppression of SWDs followed by an increase in SWDs, stress prior to a predictable negative event aggravates absences.  相似文献   

7.
Previously we have demonstrated that social isolation of rats reduces both the cerebrocortical and plasma concentrations of 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG), and potentiates the positive effects of acute ethanol administration on the concentrations of this neurosteroid. We now show that the ethanol-induced increase in 3alpha,5alpha-TH PROG is more pronounced in the brain than in the plasma of isolated rats. The ability of ethanol to inhibit isoniazid-induced convulsions is greater in isolated rats than in group-housed animals and this effect is prevented by treatment with finasteride. Social isolation modified the effects of ethanol on the amounts of steroidogenic regulatory protein mRNA and protein in the brain. Moreover, ethanol increased the amplitude of GABA(A) receptor-mediated miniature inhibitory postsynaptic currents recorded from CA1 pyramidal neurones with greater potency in hippocampal slices prepared from socially isolated rats than in those from group-housed rats, an effect inhibited by finasteride. The amounts of the alpha(4) and delta subunits of the GABA(A) receptor in the hippocampus were increased in isolated rats as were GABA(A) receptor-mediated tonic inhibitory currents in granule cells of the dentate gyrus. These results suggest that social isolation results in changes in GABA(A) receptor expression in the brain, and in an enhancement of the stimulatory effect of ethanol on brain steroidogenesis, GABA(A) receptor function and associated behaviour.  相似文献   

8.

Research Question

Recent discoveries have challenged the traditional view that the thalamus is the primary source driving spike-and-wave discharges (SWDs). At odds, SWDs in genetic absence models have a cortical focal origin in the deep layers of the perioral region of the somatosensory cortex. The present study examines the effect of unilateral and bilateral surgical resection of the assumed focal cortical region on the occurrence of SWDs in anesthetized WAG/Rij rats, a well described and validated genetic absence model.

Methods

Male WAG/Rij rats were used: 9 in the resected and 6 in the control group. EEG recordings were made before and after craniectomy, after unilateral and after bilateral removal of the focal region.

Results

SWDs decreased after unilateral cortical resection, while SWDs were no longer noticed after bilateral resection. This was also the case when the resected areas were restricted to layers I-IV with layers V and VI intact.

Conclusions

These results suggest that SWDs are completely abolished after bilateral removal of the focal region, most likely by interference with an intracortical columnar circuit. The evidence suggests that absence epilepsy is a network type of epilepsy since interference with only the local cortical network abolishes all seizures.  相似文献   

9.
We investigated the role of two cytokines, IL-1β and TNF-α, in the development of absence seizures using a genetic model of absence epilepsy in WAG/Rij rats. We administered these cytokines to animals systemically and measured the number of spike-wave discharges (SWDs) in the EEG. We also coadministered IL-1β with the GABA reuptake inhibitor tiagabine and measured the levels of IL-1β and TNF-α in the brain and blood plasma of 2-, 4-, and 6-month-old WAG/Rij rats and animals that served as a non-epileptic control (ACI). We found that IL-1β induced a significant increase in SWDs 2-5 h after administration, while TNF-α enhanced SWDs much later. Both cytokines enhanced passive behavior; body temperature was elevated only after TNF-α. The action of tiagabine was potentiated by earlier IL-1β injection, even when IL-1β was no longer active. Young WAG/Rij rats showed higher levels of TNF-α in blood serum than young ACI rats; the effects in the brain tended to be opposite. The marked differences in timing of the increase in SWDs suggest different time scales for the action of both cytokines tested. It is proposed that the results found after TNF-α are due to the de novo synthesis of IL-1β. TNF-α may possess neuroprotective effects. IL-1β might increase GABA-ergic neurotransmission. The changes in the efficacy of antiepileptic drugs related to changes in the cytokine systems may have some clinical relevance.  相似文献   

10.
Behavior of nonlinear rats and animals from Wistar and WAG/Rij (with inborn generalized absence epilepsy) strains was examined in the elevated plus-maze and the hole board. WAG/Rij rats demonstrated low exploratory behavior in both tests. In the elevated plus-maze, WAG/Rij rats were more balanced and more anxious than Wistar and nonlinear rats. Administration of ethosuximide completely eliminated spike-wave discharges but did not change behavioral interstrain differences. Since the spike-wave patterns develop in WAG/Rij at the age of 3 months, the behavior of young (2-moth-old) pups from different strains was compared and significant differences were revealed. Correlation between the genetically defined features (spike-wave discharges) and behavioral peculiarities in WAG/Rij rats is supposed.  相似文献   

11.
Antiabsence drug ethosuximide (300 mg/kg/day in drinking water for 17 days) produced an antidepressant effect (a decrease in immobility time in forced swimming test) only in WAG/Rij rats genetically predisposed to absence epilepsy only at age of 5 months when spike-wave discharges well pronounced. On rats without spike-wave discharges (21-day-old WAG/Rij and Wistar rats at the age of both at 21 day and 5 months), ethosuximide didn't produce the antidepressant effect but tended to increases the immobility time and significantly decreases the number of divings (active behavior oriented to escape from stressful situation). Ethosuximide didn't substantially change the anxiety level in WAG/Rij rats but significantly enhanced anxiety in 21-day-old Wistar rats. The results suggest that ethosuximide is not possessed of antidepressant potential unrelated to its suppressive effect on spike-wave discharges.  相似文献   

12.
In the WAG/Rij rat, a model for human absence epilepsy, spike‐wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca2+ channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of α1‐subunits of one or more high voltage‐activated Ca2+ channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3‐ and 6‐month‐old WAG/Rij rats with nonepileptic, age‐matched control rats. By immunocytochemistry, the expressions of α11.3‐, α12.1‐, α12.2‐, and α12.3‐subunits were shown in both strains, demonstrating the presence of Cav1.3, Cav2.1, Cav2.2, and Cav2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Cav2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed. © 2004 Wiley Periodicals, Inc. J Neurobiol 58: 467–478, 2004  相似文献   

13.
It has been shown for the first time that rearing by a foster Wistar mother with high level of maternal care (MC) counteracts the expression of genetic absence epilepsy (AE) and comorbid depression – reduces the number, duration and index of spike-wave discharges (SWDs) and immobility time in the forced swimming test, as well as exerts substantial effects on morphology and time-frequency dynamics of SWDs in WAG/Rij rats. It is supposed that increases in MC early in development might be used to counteract epileptogenesis and comorbid depression in people genetically predisposed to AE.  相似文献   

14.
Typological behavior reactions of WAG/Rij rats were studied from the standpoint of divergent modulatory integration hypothesis. This rat strain has a genetically determined dominant dysfunction of the benzodiazepine system of the thalamic nuclei. This disorder provokes an epileptiform disease such as absence epilepsy. It was suggested that the dysfunction of this system would result in a modification of the modulatory systems, which support the motivation states of escape and avoidance reactions as well as of the modulatory systems, which form the emotional states. Modifications of these states are the background of typological behavioral features of WAG/Rij rats. It was shown that WAG/Rij have the lower threshold of the development of haloperidol catalepsy, higher levels of fear and depression. On the first day of training in a shuttle box, WAG/Rij rats demonstrated better avoidance performance than Wistar rats. On the second and 28th days, the amnestic effect of the epileptiform disease was observed. The amnestic effect was also observed after passive avoidance conditioning. The results are discussed in terms of the modulatory integratin hypothesis.  相似文献   

15.
Involvement of NMDA receptors in non-convulsive epilepsy in WAG/Rij rats   总被引:2,自引:0,他引:2  
The involvement of the NMDA receptor in spontaneous non-convulsive epilepsy was studied by intracerebroventricular injections of APH and NMDA in WAG/Rij rats. The WAG/Rij rat strain is recognized as an animal model for human absence epilepsy. EEG registrations showed that APH (5 nmol/5 microliters; 25 nmol/5 microliters; 50 nmol/5 microliters) causes a dose-dependent decrease in the number and mean duration of the spike-wave discharges, while NMDA (50 pmol/5 microliters; 500 pmol/5 microliters; 5 nmol/5 microliters) induces a dose-dependent increase in the number. The effects of NMDA (5 nmol/5 microliters) can be blocked completely by APH (50 nmol/5 microliters). These results suggest an involvement of the NMDA receptor in experimental non-convulsive epilepsy, observed in the WAG/Rij model.  相似文献   

16.
Ovarian hormones play an important role in the regulation of absence seizures in patients as well as in animal models. The present study examined whether chronic progesterone exposure would induce tolerance for the occurrence of absence seizures and whether reduction in gonadal steroids (via ovariectomy) would alter the number of basal and stress induced absence seizures in WAG/Rij rats, a genetic model for absence epilepsy.

Methods

In Experiment 1, female WAG/Rij rats equipped with EEG electrodes received progesterone (P) (20 mg/kg) or cyclodextrin (CD, solvent) i.p. injections once a day for 3 days while a third group received CD injections on Days 1 and 2 and P on Day 3. The EEG was recorded on the day preceding the injections and at each day after injections. In Experiment 2, female WAG/Rij rats equipped with EEG electrodes, were ovariectomized (OVX) or sham operated. EEG recordings were made before and at the 4th, 8th, 10th, 20th, and 35th day after surgery. Rats were then exposed to three series of 10 foot-shocks (FS, 1.5 mA, 1 s) over 3 days. The EEG was recorded 1 h before and 2 h after each FS series.

Results

Tolerance developed after a single P injection and the effect of P on SWDs was facilitated by two preceding control injections. No differences were found between OVX and sham-operated females in the occurrence of SWDs either in resting conditions or after acute FS exposure. However, OVX females showed a more prominent day-to-day aggravation in SWDs after repeated FS administration.

Conclusions

The data suggest an important interaction between hormones of the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-gonadal axes in seizure control. On the one hand, stress interferes with and facilitates the acute effects of progesterone on the occurrence of SWDs and, on the other hand, rats with an intact hypothalamo-pituitary-gonadal axis can better regulate the stress response and develop tolerance to the stressor.  相似文献   


17.
Matrix metalloproteinases (MMPs) are known to be activated in the brain by epileptic seizures and elevated MMP-9 activity has been found in a genetic model of generalized absence epilepsy (Wistar Albino Glaxo Rijswijk/WAG/Rij rats). In this study we posed the question, whether MMP inhibitory dose of doxycycline (20 mg/kg) could affect the spike-wave-discharges (SWDs) of the WAG/Rij rat. We found that intraperitoneal (i.p.) administration of 20 mg/kg doxycycline significantly increased the incidence and duration of SWDs for 4 h. As doxycycline has both MMP inhibitory and anti-inflammatory effects we also tested a lower dose of doxycycline (10 mg/kg, i.p.) and a selective broad-spectrum MMP inhibitor GM6001 (N-[2(R)-2-(hydroxamido carbonylmethyl)-4-methylpentanoyl]-l-tryptophane methylamide) intracerebroventricularly (i.c.v., 10 ng/rat). While 10 mg/kg doxycycline significantly increased the SWD number for 1 h, GM6001 significantly increased the SWD number during the whole 4-h recording period. Our results could indicate that the induction of MMPs in the epileptic brain, besides contributing to structural remodeling, would also be associated with such functions as homeostatic synaptic plasticity which might counteract epileptic seizures.  相似文献   

18.
In genetically predisposed WAG/Rij rats and healthy Wistar rats, we studied functioning of the paralemniscal region of the thalamo-cortical system. The responses of neurons of the somatosensory cortex to single electrical stimulation of the posterior nucleus of the thalamus were recorded in two- to three-monthold rats within the period when the epileptic activity was not developed. We revealed lower number of shortterm inhibitory responses in WAG/Rij rats as compared to Wistar rats. This may create preconditions for the spreading of spike-wave activity in the somatosensory cortex, which is an electrophysiological sign of absence epilepsy.  相似文献   

19.
Behavior of susceptible and non-susceptible to audiogenic (convulsive) seizures rats from inbred WAG/Rij strain, genetically predisposed to absence epilepsy, and outbred Wistar strain, genetically not predisposed to absence epilepsy, was compared to assess the level of anxiety (in open field, light-dark choice and elevated plus-maze tests) and the level of depressiveness (in the sucrose consumption and forced swimming tests). Increased level of anxiety was found only in susceptible to audiogenic seizures rats both from WAG/Rij and Wistar strain, but increased level of depressiveness was found only in WAG/Rij strain rats as compared with Wistar rats independently of their susceptibility to audiogenic seizures. Results suggest that increased depressiveness in WAG/Rij strain rats is associated with absence epilepsy but increased anxiety with susceptibility to audiogenic seizures.  相似文献   

20.
The aim of this study was to investigate the ultrastructure of the reticular thalamic nucleus (RTN) in rats of WAG/Rij strain, an established model for human absence epilepsy. Most RTN neurons are medium-to large-sized and have either dark or light appearance, depending on their functional state. Moreover, small-sized neurons with short axons are present, their characteristics being described for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号