首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The derivation of embryonic stem cells (hESC) from human embryos a decade ago started a new era in perspectives for cell therapy as well as understanding human development and disease. More recently, reprogramming of somatic cells to an embryonic stem cell‐like state (induced pluripotent stem cells, iPS) presented a new milestone in this area, making it possible to derive all cells types from any patients bearing specific genetic mutations. With the development of efficient differentiation protocols we are now able to use the derivatives of pluripotent stem cells to study mechanisms of disease and as human models for drug and toxicology testing. In addition derivatives of pluripotent stem cells are now close to be used in clinical practice although for the heart, specific additional challenges have been identified that preclude short‐term application in cell therapy. Here we review techniques presently used to induce differentiation of pluripotent stem cells into cardiomyocytes and the potential these cells have as disease models and for therapy. J. Cell. Biochem. 107: 592–599, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Jang YY  Ye Z  Cheng L 《Molecular imaging》2011,10(2):111-122
During the last decade, there has been enormous progress in understanding both multipotent stem cells such as hematopoietic stem cells and pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells. However, it has been challenging to study developmental potentials of these stem cells because they reside in complex cellular environments and aspects of their distribution, migration, engraftment, survival, proliferation, and differentiation often could not be sufficiently elucidated based on limited snapshot images of location or environment or molecular markers. Therefore, reliable imaging methods to monitor or track the fate of the stem cells are highly desirable. Both short-term and more permanent monitoring of stem cells in cultures and in live organisms have benefited from recently developed imaging approaches that are designed to investigate cell behavior and function. Confocal and multiphoton microscopy, time-lapse imaging technology, and series of noninvasive imaging technologies enable us to investigate cell behavior in the context of a live organism. In turn, the knowledge gained has brought our understanding of stem cell biology to a new level. In this review, we discuss the application of current imaging modalities for research of hematopoietic stem cells and pluripotent stem cells and the challenges ahead.  相似文献   

3.
人多潜能干细胞(hPSC)包括人胚胎干细胞(hESC)和诱导性多潜能干细胞(hiPSC),理论上具有分化成为人类所有细胞类型的能力.基于hPSC的基因打靶技术,不但可以纠正人基因组中的遗传突变用于细胞治疗,还可以通过反向遗传学的方式向hPSC引入疾病特异的突变.将携带人类疾病遗传基因的hPSC分化为特定的细胞类型,在理论上可以在体外模拟人类疾病的发生,研究人类疾病发生的机理,并建立体外筛选平台寻找治疗性药物.基因编辑和干细胞技术的结合将为人类疾病的机制研究和再生医学治疗带来革命性的突破.  相似文献   

4.
5.
Pluripotency manifests during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Rodent pluripotent stem cells can be considered as two distinct states: na?ve and primed. Na?ve pluripotent stem cell lines are distinguished from primed cells by self-renewal in response to LIF signaling and MEK/GSK3 inhibition (LIF/2i conditions) and two active X chromosomes in female cells. In rodent cells, the na?ve pluripotent state may be accessed through at least three routes: explantation of the inner cell mass, somatic cell reprogramming by ectopic Oct4, Sox2, Klf4, and C-myc, and direct reversion of primed post-implantation-associated epiblast stem cells (EpiSCs). In contrast to their rodent counterparts, human embryonic stem cells and induced pluripotent stem cells more closely resemble rodent primed EpiSCs. A critical question is whether na?ve human pluripotent stem cells with bona fide features of both a pluripotent state and na?ve-specific features can be obtained. In this review, we outline current understanding of the differences between these pluripotent states in mice, new perspectives on the origins of na?ve pluripotency in rodents, and recent attempts to apply the rodent paradigm to capture na?ve pluripotency in human cells. Unraveling how to stably induce na?ve pluripotency in human cells will influence the full realization of human pluripotent stem cell biology and medicine.  相似文献   

6.
Despite advancements made in our understanding of ocular biology, therapeutic options for many debilitating retinal diseases remain limited. Stem cell-based therapies are a potential avenue for treatment of retinal disease, and this mini-review will focus on current research in this area. Cellular therapies to replace retinal pigmented epithelium (RPE) and/or photoreceptors to treat age-related macular degeneration (AMD), Stargardt's macular dystrophy, and retinitis pigmentosa are currently being developed. Over the past decade, significant advancements have been made using different types of human stem cells with varying capacities to differentiate into these target retinal cell types. We review and evaluate pluripotent stem cells, both human embryonic stem cells and human induced pluripotent stem cells, as well as protocols for differentiation of ocular cells, and culture and transplant techniques that might be used to deliver cells to patients.  相似文献   

7.
8.
Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates.  相似文献   

9.
10.
The potential for the formation of teratomas or other neoplasms is a major safety roadblock to clinical application of pluripotent stem cell therapies. Preclinical assessment of the risk of tumor formation in this context poses considerable scientific and regulatory challenges, especially because animal xenograft models may not properly reflect the long-term tumorigenic potential of human cells. A better understanding of the biology of spontaneously occurring teratomas and related tumors in humans can help to guide efforts to assess and minimize the potential hazards of embryonic stem cell or induced pluripotent stem cell therapeutics. Here we review the features of teratomas derived experimentally from human pluripotent stem cells and argue that they most closely resemble spontaneous benign teratomas that occur early in both mouse and human life. The natural history and pathology of these spontaneously occurring teratomas provide important clues for preclinical safety assessment and patient monitoring in trials of stem cell therapies.  相似文献   

11.
12.
Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.  相似文献   

13.
14.
Induced pluripotent stem cells (iPSC) technology has propelled the field of stem cells biology, providing new cells to explore the molecular mechanisms of pluripotency, cancer biology and aging. A major advantage of human iPSC, compared to the pluripotent embryonic stem cells, is that they can be generated from virtually any embryonic or adult somatic cell type without destruction of human blastocysts. In addition, iPSC can be generated from somatic cells harvested from normal individuals or patients, and used as a cellular tool to unravel mechanisms of human development and to model diseases in a manner not possible before. Besides these fundamental aspects of human biology and physiology that are revealed using iPSC or iPSC-derived cells, these cells hold an immense potential for cell-based therapies, and for the discovery of new or personalized pharmacological treatments for many disorders. Here, we review some of the current challenges and concerns about iPSC technology. We introduce the potential held by iPSC for research and development of novel health-related applications. We briefly present the efforts made by the scientific and clinical communities to create the necessary guidelines and regulations to achieve the highest quality standards in the procedures for iPSC generation, characterization and long-term preservation. Finally, we present some of the audacious and pioneer clinical trials in progress with iPSC-derived cells.  相似文献   

15.
Pluripotent stem cells are able to proliferate indefinitely and differentiate in vitro into various cell types. However, in most cases in vitro differentiation of the pluripotent stem cells is asynchronous and incomplete, and the residual undifferentiated cells can initiate teratoma development after transplantation into recipients. These features of the pluripotent stem cells are the major issue for development of safe cell therapy technologies based on pluripotent stem cells. Considering significant resemblance of growth rates of pluripotent stem and cancer cells we investigated antiproliferative and cytotoxic effects of different type cytostatics (mitomycin C, etoposide, vinblastine and cycloheximide) on the undifferentiated and differentiating mouse embryonic stem cells, embryonic germ cells, blastocyst and on mouse embryonal teratocarcinoma cells and mouse embryonic fibroblasts. The findings showed that all cytostatics used induced both antiproliferative effects and acute toxic processes in undifferentiated pluripotent stem cells and embryonal teratocarcinoma cells whereas these effects were less in differentiating embryonic stem cells and embryonic fibroblast. Moreover, the trophoblast cells of mouse blastocysts were less sensitive to damaging effects of cytostatics than inner cell mass cells. The examination of deferred effects of cytostatics revealed that the effects of mitomycin C, etoposide and vinblastine, but not cycloheximide, were irreversible because survived cells were not able to proliferate. Nevertheless, the numbers of embryonic fibroblasts exposed to etoposide or vinblastine remained unchanged while vast majority of undifferentiated pluripotent cells treated underwent apoptosis. Thus, diverse effects of etoposide and vinblastine on the undifferentiated pluripotent stem cells and differentiated embryonic cells allow us to consider these cytostatics and their analogs as drug-candidates for selective elimination of the residual undifferentiated pluripotent stem cells from population of differentiating cells. These findings demonstrate for the first time the possibility of selective elimination of undifferentiated pluripotent stem cells using cytostatic drugs approved for clinic practice. However, to improve effectiveness and safety of this approach and to prevent mutagenic, carcinogenic and teratogenic effects on undifferentiated pluripotent stem cells and their differentiated cell derivatives large-scale studies of cytostatic effects using different experimental design and active doses must be performed.  相似文献   

16.
Despite recent advances in the derivation of rat embryonic stem cells, clear comprehension of the timing and mechanisms underlying rat early embryo lineage selection is lacking. We have previously shown the in vivo contribution of rat embryonic stem-like cells exclusively to developing extraembryonic tissues. To elucidate possible mechanisms governing the in vitro and in vivo behaviors of these rat blastocyst-derived stem cells, we evaluated their developmental capacity by using several approaches. Molecular marker analysis demonstrated the expression profile of genes characterizing not only pluripotency but also extraembryonic endoderm and trophoblast. In vitro differentiation through embryoid body formation showed in vitro pluripotent capacity through differentiation into derivatives of all three embryonic germ layers. Following either blastocyst injection, diploid or tetraploid aggregation, and embryo transfer, these rat blastocyst-derived stem cells also demonstrated in vivo multipotency through contribution to multiple developmentally distinct extraembryonic lineages. Features of phenotypic heterogeneity were revealed following examination of cell line morphology and culture behavior, as well as quantitative analysis of marker expression in discrete undifferentiated and differentiated populations of cells by flow cytometry. We demonstrate for the first time that stem cells derived from the rat blastocyst have the ability to contribute to the embryonic and extraembryonic lineages. Together, these results provide a valuable new model for rat stem cell biology and for the elucidation of early lineage selection in the embryo.  相似文献   

17.
18.
视网膜色素上皮(RPE)对视觉功能的维持起着至关重要的作用。视网膜变性是全球不可治愈性致盲疾病的重要原因,它由视网膜色素上皮功能失常所引起。因此,视网膜色素上皮移植是视网膜变性患者恢复视力的一种最有前景的手段之一。随着干细胞技术的快速发展,从多能干细胞(PSC)到有功能的视网膜色素上皮细胞的体外分化诱导技术已经成熟,其中包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs)等。此外,从患者特异性iPSCs分化而来的RPE更能用于阐明发病机理并有针对性地个体治疗。更值得一提的是,经诱导得到RPE的移植不论在动物模型中,还是在临床试验里都已经得到了可喜的治疗效果。本文回顾PSC来源RPE干预治疗视网膜变性的最新研究进展。  相似文献   

19.
Heart diseases such as myocardial infarction cause massive loss of cardiomyocytes, but the human heart lacks the innate ability to regenerate. In the adult mammalian heart, a resident progenitor cell population, termed epicardial progenitors, has been identified and reported to stay quiescent under uninjured conditions; however, myocardial infarction induces their proliferation and de novo differentiation into cardiac cells. It is conceivable to develop novel therapeutic approaches for myocardial repair by targeting such expandable sources of cardiac progenitors, thereby giving rise to new muscle and vasculatures. Human pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells can self‐renew and differentiate into the three major cell types of the heart, namely cardiomyocytes, smooth muscle, and endothelial cells. In this review, we describe our current knowledge of the therapeutic potential and challenges associated with the use of pluripotent stem cell and progenitor biology in cell therapy. An emphasis is placed on the contribution of paracrine factors in the growth of myocardium and neovascularization as well as the role of immunogenicity in cell survival and engraftment. (Part C) 96:98–107, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
目前细胞和发育生物学上的研究成果为生物医学研究提供了广泛的前景.将完全分化的细胞重编程,不经过胚胎逆转为多能干细胞状态,这点燃了再生医学应用的新希望,这一成果从法律、道德、伦理等不同方面被人们所接受.通过体细胞克隆胚胎获得干细胞所面临的破坏胚胎的伦理限制,促使研究者去寻求将分化细胞重编程逆转为干细胞的新方法.主要论述了体细胞重编程的原理、过程及不经过胚胎逆转为多能干细胞的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号