首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bae SK  Kim SR  Kim JG  Kim JY  Koo TH  Jang HO  Yun I  Yoo MA  Bae MK 《FEBS letters》2006,580(17):4105-4113
Visfatin has been originally identified as a growth factor for early stage B cells and recently known as an adipokine. Here, we report that hypoxia induces the visfatin mRNA and protein levels in MCF7 breast cancer cells. We also demonstrate that induction of visfatin gene is regulated by hypoxia-inducible factor-1alpha (HIF-1alpha). Moreover, 5'-flanking promoter region of human visfatin gene contains two functional HIF responsive elements (HREs), activating the expression of visfatin. Mutation of these HREs in the visfatin promoter abrogates activation of a luciferase reporter gene driven by visfatin promoter under hypoxia. Taken together, our results demonstrate that visfatin is a new hypoxia-inducible gene of which expression is stimulated through the interaction of HIF-1 with HRE sites in its promoter region.  相似文献   

2.
Hypoxia generated in tumors has been shown to contribute to mutations and genetic instability. However, the molecular mechanisms remain incompletely defined. Since reactive oxygen species (ROS) are overproduced immediately after reoxygenation of hypoxic cells and generate oxidized guanine, we assumed that the mechanisms might involve translesion DNA polymerases that can bypass oxidized guanine. We report here that hypoxia as well as hypoxia mimetics, desferrioxamine, and CoCl(2), enhanced the expression of DNA polymerase iota (pol iota) in human tumor cell lines. Searching the consensus sequence of hypoxia response element to which HIF-1 binds revealed that it locates in the intron 1 of the pol iota gene. These results suggest that HIF-1-mediated pol iota gene expression may be involved in the generation of translesion mutations during DNA replication after hypoxia followed by reoxygenation, thereby contributing to the accumulation of genetic changes in tumor cells.  相似文献   

3.
Oltipraz, a member of a class of 1,2-dithiolethiones, is a potent phase 2 enzyme inducing agent used as a cancer chemopreventive. In this study, we investigated regulation of the phase 2 enzyme response and protection against endogenous oxidative stress in lymphoblastic leukemic parental CEM cells and cells lacking mitochondrial DNA (mtDNA) (rho0) by oltipraz. Glutathione (GSH) levels (total and mitochondrial) and glutathione S-transferase (GST) activity were significantly increased after pretreatment with oltipraz in both parental (rho+) and rho0 cells, and both cell lines were resistant to mitochondrial oxidation, loss of mitochondrial membrane potential, and cell death in response to the GSH depleting agent diethylmaleate. These results show that the phase 2 enzyme response, by enhancing GSH-dependent systems involved in xenobiotic metabolism, blocks endogenous oxidative stress and cell death, and that this response is intact in cells lacking mtDNA.  相似文献   

4.
5.
While progress has been made in treating cancer, cytotoxic chemotherapeutic agents are still the most widely used drugs and are associated with severe side-effects. Drugs that target unique molecular signalling pathways are needed for treating cancer with low or no intrinsic toxicity to normal cells. Our goal is to target hypoxic tumours and specifically the hypoxia inducible factor (HIF) pathway for the development of new cancer therapies. To this end, we have previously developed benzopyran-based HIF-1 inhibitors such as arylsulfonamide KCN1. However, KCN1 and its earlier analogs have poor water solubility, which hamper their applications. Herein, we describe a series of KCN1 analogs that incorporate a morpholine moiety at various positions. We found that replacing the benzopyran group of KCN1 with a phenyl group with a morpholinomethyl moiety at the para positions had minimal effect on potency and improved the water solubility of two new compounds by more than 10-fold compared to KCN1, the lead compound.  相似文献   

6.
The better adaptation of native Tibetans to hypoxia is thought to be partly due to improved umbilical circulation, which results in reduced pre- and postnatal fatalities. We hypothesized that the difference in umbilical circulation between native Tibetans and other high-altitude inhabitants was due to differences in the expression of hypoxia-induced factor (HIF-1) and its target genes vascular endothelial growth factor (VEGF) and inducible nitric oxide synthase (iNOS). We tested this hypothesis by examining the effect of hypoxia on the expression of HIF-1alpha, VEGF, and iNOS in cultured umbilical venous endothelial cells (UVECs) from native Tibetans and immigrant Hans. UVECs were collected and cultured under hypoxic (0.5% oxygen) or normoxic conditions for 2, 4, 12 and 24 h. The mRNA levels of HIF-1alpha, VEGF, endothelial nitric oxide synthase (eNOS) and iNOS and the protein level of HIF-1alpha were determined with RT-PCR and Western blot analyses, respectively. In both immigrant Han and Tibetans, HIF-1alpha mRNA was constitutively expressed under normoxic condition, and remained constant after hypoxic exposure. In contrast, HIF-1alpha protein was undetectable under normoxic condition, but underwent dynamic changes in response to hypoxia. It was induced at 4 h, peaked at 12 h, and remained elevated at 24 h. Concurrent with the induction of HIF-1alpha protein, the mRNA levels of VEGF and iNOS were also up-regulated whereas that of eNOS was down-regulated. The lack of a hypoxia-related difference in the expression of HIF-1alpha and its target genes suggests that HIF-1alpha does not play a critical role in high altitude adaptation. Alternative mechanisms may be responsible for the better adaptation of native Tibetans.  相似文献   

7.
8.
Human T-cell leukemia virus type-1 (HTLV-1) expresses an 87-amino acid protein named p13 that is targeted to the inner mitochondrial membrane. Previous studies showed that a synthetic peptide spanning an alpha helical domain of p13 alters mitochondrial membrane permeability to cations, resulting in swelling. The present study examined the effects of full-length p13 on isolated, energized mitochondria. Results demonstrated that p13 triggers an inward K+ current that leads to mitochondrial swelling and confers a crescent-like morphology distinct from that caused by opening of the permeability transition pore. p13 also induces depolarization, with a matching increase in respiratory chain activity, and augments production of reactive oxygen species (ROS). These effects require an intact alpha helical domain and strictly depend on the presence of K+ in the assay medium. The effects of p13 on ROS are mimicked by the K+ ionophore valinomycin, while the protonophore FCCP decreases ROS, indicating that depolarization induced by K+ vs. H+ currents has different effects on mitochondrial ROS production, possibly because of their opposite effects on matrix pH (alkalinization and acidification, respectively). The downstream consequences of p13-induced mitochondrial K+ permeability are likely to have an important influence on the redox state and turnover of HTLV-1-infected cells.  相似文献   

9.
Hypoxic environment in solid tumor is known to favor cell survival and to initiate the formation of new capillaries. In this work, we identified by 2D gel analysis 94-kDa glucose-regulated protein (GRP94) as being upregulated in human endothelial cells in response to hypoxia. Three putative hypoxia responsive elements (HRE) were found in the GRP94 promoter. Competition experiments of HIF-1 DNA binding using specific probes containing each HRE sequence of the GRP94 promoter clearly evidenced that HIF-1 binds these sequences with high affinity. The human GRP94 promoter was then cloned upstream of the luciferase gene and showed enhanced activity in hypoxic conditions. Mutation of two of the three HREs present in this promoter completely inhibited the hypoxia-induced increase in luciferase activity.  相似文献   

10.
Hypoxia upregulates the expression of the cardioprotective peptide adrenomedullin in cardiomyocytes. We characterized this pathway in murine HL-1 cardiomyocytes. Inhibition of mitochondrial complexes I, III, and IV largely, but not completely, reduced hypoxic adrenomedullin mRNA increase in gas-impermeable culture plates. Complex III inhibition was also effective in permeable culture plates, so that this effect is unlikely due to intracellular oxygen redistribution, whereas complex I blockade was ineffective in permeable plates. Complex II does not participate in this effect, as shown by chemical and siRNA inactivation. ROS scavenging by nitroblue tetrazolium and general flavoprotein inhibition by diphenyleniodonium nearly abrogated the hypoxic adrenomedullin mRNA increase. Thus, ROS production by flavoproteins is crucial for hypoxic upregulation of adrenomedullin mRNA in murine HL-1 cardiomyocytes. These ROS originate both from the mitochondrial complex III and from additional, presumably extramitochondrial, sources. Mitochondrial oxygen consumption appears to have impact on oxygen availability at these extramitochondrial sensors.  相似文献   

11.
TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.  相似文献   

12.
Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1alpha protein accumulation without affecting HIF-1alpha mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors.  相似文献   

13.
The hypoxia-inducible factor (HIF) 1alpha is a key regulator of the cellular response to oxygen deprivation. Specific disruption of the HIF-1 pathway is important for exploring its role in tumor biology and developing more efficient weapons to treat cancer. In this study, we stably transfected human breast tumor MCF-7 cells with short hairpin RNA expression vectors targeting HIF-1alpha. After knockdown of HIF-1alpha, hypoxia-induced expression of its target genes such as vascular endothelial growth factor, Glut-1, phosphoglycerate kinase, and P-glycoprotein were markedly attenuated. Moreover, HIF-1alpha knockdown was found to suppress the shift from S-phase to G(1) induced by hypoxia and increase drug sensitivity to methotrexate. The growth rates of HIF1alpha-knockdown tumors were drastically retarded in both subcutaneous and orthotopic xenograft models, which were accompanied by decreased angiogenesis and reduced expression of glucose transporter in tissue sections. These data demonstrate that HIF-1alpha knockdown reduces tumorigenicity of MCF-7 cells and suggest a promising combination of both anti-HIF-1 strategy and traditional chemotherapy to improve cancer treatment.  相似文献   

14.
A protein with a molecular mass of 27kDa was induced by hypoxia in a mouse brain capillary endothelial cell line and identified as triosephosphate isomerase (TPI) by amino-terminal sequencing. Hypoxia caused an elevation of the TPI protein level, concomitant with an increase of the TPI mRNA level. However, hypoxia resulted in an insufficient elevation of TPI activity level, compared to an increase of TPI protein level. When cells expressing the recombinant TPI protein with histidine tag were exposed to hypoxia and the TPI protein was affinity-purified, the catalytic activity (specific activity) of the TPI protein purified from hypoxic cells was substantially lower than that obtained from normoxic cells. In addition, three TPI isoforms with an electrophoretic multiplicity were found; two of the three isoforms were substantially increased in response to the hypoxia, but the level of the most acidic isoform was barely changed. The induction of TPI gene expression by hypoxia was suppressed by (1) a chelator of intracellular Ca(2+), (2) a blocker of non-selective cation channels, (3) a blocker of Na(+)/Ca(2+) exchangers, (4) an inhibitor of Ca(2+)/calmodulin-dependent protein kinases, and (5) an inhibitor of c-jun/AP-1 activation.  相似文献   

15.
16.
The development of intratumoral hypoxia, a hallmark of rapidly progressing solid tumors, renders tumor cells resistant to chemotherapy and radiation therapy. We have recently shown that inhibition of aldose reductase (AR), an enzyme that catalyzes the reduction of lipid aldehydes and their glutathione conjugates, prevents human colon cancer cell growth in culture as well as in nude mouse xenografts by inhibiting the NF-κB-dependent activation of oxidative stress-mediated inflammatory and carcinogenic markers. However, the role of AR in mediating hypoxic stress signals is not known. We therefore investigated the molecular mechanisms by which AR inhibition prevents the hypoxia-induced human colon cancer cells growth and invasion. Our results indicate that AR inhibition by the pharmacological inhibitor fidarestat or ablation by AR-specific siRNA prevents hypoxia-induced proliferation of HT29, SW480, and Caco-2 colon cancer cells. Furthermore, hypoxia-induced increase in the level of HIF-1α in colon cancer cells was significantly decreased by AR inhibition. During hypoxic conditions, treatment of HT29 cells with the AR inhibitor fidarestat significantly decreased the expression of vascular endothelial growth factor, a down target of HIF-1α, at both mRNA and protein levels and also prevented the activation of PI3K/AKT, GSK3β, Snail, and lysyl oxidase. Furthermore, inhibition of hypoxia-induced HIF-1α protein accumulation by AR inhibition was abolished in the presence of MG132, a potent inhibitor of the 26 S proteasome. In addition, AR inhibition also prevented the hypoxia-induced inflammatory molecules such as Cox-2 and PGE2 and expression of extracellular matrix proteins such as MMP2, vimentin, uPAR, and lysyl oxidase 2. In conclusion, our results indicate that AR mediates hypoxic signals, leading to tumor progression and invasion.  相似文献   

17.
18.
Lin JL  Wang MJ  Lee D  Liang CC  Lin S 《FEBS letters》2008,582(17):2615-2619
We examined the mRNA levels of hypoxia-inducible factor-1alpha (HIF-1alpha) in bone marrow mesenchymal stem cells (bmMSCs) of eight osteoarthritis patients. BmMSC-1, expressing higher HIF-1alpha mRNA and protein than bmMSC-5, elicited higher matrix metalloproteinase-1 (MMP1) activity and stronger invasive capacity. In vitro invasion assays and quantitative PCR analyses showed that targeted inhibition of HIF-1alpha in bmMSC-1 decreased its invasion and expressions of MMP1 and MMP3, whereas overexpression of HIF-1alpha in bmMSC-5 increased its invasion and expressions of MMP1 and MMP3. Therefore, HIF-1alpha can regulate MMP1 and MMP3 expressions in human bmMSCs, which might suggest a pathophysiological role of bmMSC expressing high HIF-1alpha in bone diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号