首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular metabolism is most often described and interpreted in terms of the biochemical reactions that make up the metabolic network. Genomics is providing near complete information regarding the genes/gene products participating in cellular metabolism for a growing number of organisms. As the true functional units of metabolic systems are its pathways, the time has arrived to define metabolic pathways in the context of whole-cell metabolism for the analysis of the structural design and capabilities of the metabolic network. In this study, we present the theoretical foundations for the identification of the unique set of systemically independent biochemical pathways, termed extreme pathways, based on system stochiometry and limited thermodynamics. These pathways represent the edges of the steady-state flux cone derived from convex analysis, and they can be used to represent any flux distribution achievable by the metabolic network. An algorithm is presented to determine the set of extreme pathways for a system of any complexity and a classification scheme is introduced for the characterization of these pathways. The property of systemic independence is discussed along with its implications for issues related to metabolic regulation and the evolution of cellular metabolic networks. The underlying pathway structure that is determined from the set of extreme pathways now provides us with the ability to analyse, interpret, and perhaps predict metabolic function from a pathway-based perspective in addition to the traditional reaction-based perspective. The algorithm and classification scheme developed can be used to describe the pathway structure in annotated genomes to explore the capabilities of an organism.  相似文献   

2.
The elucidation of organism-scale metabolic networks necessitates the development of integrative methods to analyze and interpret the systemic properties of cellular metabolism. A shift in emphasis from single metabolic reactions to systemically defined pathways is one consequence of such an integrative analysis of metabolic systems. The constraints of systemic stoichiometry, and limited thermodynamics have led to the definition of the flux space within the context of convex analysis. The flux space of the metabolic system, containing all allowable flux distributions, is constrained to a convex polyhedral cone in a high-dimensional space. From metabolic pathway analysis, the edges of the high-dimensional flux cone are vectors that correspond to systemically defined "extreme pathways" spanning the capabilities of the system. The addition of maximum flux capacities of individual metabolic reactions serves to further constrain the flux space and has led to the development of flux balance analysis using linear optimization to calculate optimal flux distributions. Here we provide the precise theoretical connections between pathway analysis and flux balance analysis allowing for their combined application to study integrated metabolic function. Shifts in metabolic behavior are calculated using linear optimization and are then interpreted using the extreme pathways to demonstrate the concept of pathway utilization. Changes to the reaction network, such as the removal of a reaction, can lead to the generation of suboptimal phenotypes that can be directly attributed to the loss of pathway function and capabilities. Optimal growth phenotypes are calculated as a function of environmental variables, such as the availability of substrate and oxygen, leading to the definition of phenotypic phase planes. It is illustrated how optimality properties of the computed flux distributions can be interpreted in terms of the extreme pathways. Together these developments are applied to an example network and to core metabolism of Escherichia coli demonstrating the connections between the extreme pathways, optimal flux distributions, and phenotypic phase planes. The consequences of changing environmental and internal conditions of the network are examined for growth on glucose and succinate in the face of a variety of gene deletions. The convergence of the calculation of optimal phenotypes through linear programming and the definition of extreme pathways establishes a different perspective for the understanding of how a defined metabolic network is best used under different environmental and internal conditions or, in other words, a pathway basis for the interpretation of the metabolic reaction norm.  相似文献   

3.
Genome-scale metabolic networks can be characterized by a set of systemically independent and unique extreme pathways. These extreme pathways span a convex, high-dimensional space that circumscribes all potential steady-state flux distributions achievable by the defined metabolic network. Genome-scale extreme pathways associated with the production of non-essential amino acids in Haemophilus influenzae were computed. They offer valuable insight into the functioning of its metabolic network. Three key results were obtained. First, there were multiple internal flux maps corresponding to externally indistinguishable states. It was shown that there was an average of 37 internal states per unique exchange flux vector in H. influenzae when the network was used to produce a single amino acid while allowing carbon dioxide and acetate as carbon sinks. With the inclusion of succinate as an additional output, this ratio increased to 52, a 40% increase. Second, an analysis of the carbon fates illustrated that the extreme pathways were non-uniformly distributed across the carbon fate spectrum. In the detailed case study, 45% of the distinct carbon fate values associated with lysine production represented 85% of the extreme pathways. Third, this distribution fell between distinct systemic constraints. For lysine production, the carbon fate values that represented 85% of the pathways described above corresponded to only 2 distinct ratios of 1:1 and 4:1 between carbon dioxide and acetate. The present study analysed single outputs from one organism, and provides a start to genome-scale extreme pathways studies. These emergent system-level characterizations show the significance of metabolic extreme pathway analysis at the genome-scale.  相似文献   

4.
We introduce the concept of metaconsensus and employ it to make high confidence predictions of early enzyme functions and the metabolic properties that they may have produced. Several independent studies have used comparative bioinformatics methods to identify taxonomically broad features of genomic sequence data, protein structure data, and metabolic pathway data in order to predict physiological features that were present in early, ancestral life forms. But all such methods carry with them some level of technical bias. Here, we cross-reference the results of these previous studies to determine enzyme functions predicted to be ancient by multiple methods. We survey modern metabolic pathways to identify those that maintain the highest frequency of metaconsensus enzymes. Using the full set of modern reactions catalyzed by these metaconsensus enzyme functions, we reconstruct a representative metabolic network that may reflect the core metabolism of early life forms. Our results show that ten enzyme functions, four hydrolases, three transferases, one oxidoreductase, one lyase, and one ligase, are determined by metaconsensus to be present at least as late as the last universal common ancestor. Subnetworks within central metabolic processes related to sugar and starch metabolism, amino acid biosynthesis, phospholipid metabolism, and CoA biosynthesis, have high frequencies of these enzyme functions. We demonstrate that a large metabolic network can be generated from this small number of enzyme functions.  相似文献   

5.
Haemophilus influenzae Rd was the first free-living organism for which the complete genomic sequence was established. The annotated sequence and known biochemical information was used to define the H. influenzae Rd metabolic genotype. This genotype contains 488 metabolic reactions operating on 343 metabolites. The stoichiometric matrix was used to determine the systems characteristics of the metabolic genotype and to assess the metabolic capabilities of H. influenzae. The need to balance cofactor and biosynthetic precursor production during growth on mixed substrates led to the definition of six different optimal metabolic phenotypes arising from the same metabolic genotype, each with different constraining features. The effects of variations in the metabolic genotype were also studied, and it was shown that the H. influenzae Rd metabolic genotype contains redundant functions under defined conditions. We thus show that the synthesis of in silico metabolic genotypes from annotated genome sequences is possible and that systems analysis methods are available that can be used to analyze and interpret phenotypic behavior of such genotypes.  相似文献   

6.
Constraints-based models have been effectively used to analyse, interpret, and predict the function of reconstructed genome-scale metabolic models. The first generation of these models used "hard" non-adjustable constraints associated with network connectivity, irreversibility of metabolic reactions, and maximal flux capacities. These constraints restrict the allowable behaviors of a network to a convex mathematical solution space whose edges are extreme pathways that can be used to characterize the optimal performance of a network under a stated performance criterion. The development of a second generation of constraints-based models by incorporating constraints associated with regulation of gene expression was described in a companion paper published in this journal, using flux-balance analysis to generate time courses of growth and by-product secretion using a skeleton representation of core metabolism. The imposition of these additional restrictions prevents the use of a subset of the extreme pathways that are derived from the "hard" constraints, thus reducing the solution space and restricting allowable network functions. Here, we examine the reduction of the solution space due to regulatory constraints using extreme pathway analysis. The imposition of environmental conditions and regulatory mechanisms sharply reduces the number of active extreme pathways. This approach is demonstrated for the skeleton system mentioned above, which has 80 extreme pathways. As regulatory constraints are applied to the system, the number of feasible extreme pathways is reduced to between 26 and 2 extreme pathways, a reduction of between 67.5 and 97.5%. The method developed here provides a way to interpret how regulatory mechanisms are used to constrain network functions and produce a small range of physiologically meaningful behaviors from all allowable network functions.  相似文献   

7.
Thermodynamics impose a major constraint on the structure of metabolic pathways. Here, we use carbon fixation pathways to demonstrate how thermodynamics shape the structure of pathways and determine the cellular resources they consume. We analyze the energetic profile of prototypical reactions and show that each reaction type displays a characteristic change in Gibbs energy. Specifically, although carbon fixation pathways display a considerable structural variability, they are all energetically constrained by two types of reactions: carboxylation and carboxyl reduction. In fact, all adenosine triphosphate (ATP) molecules consumed by carbon fixation pathways - with a single exception - are used, directly or indirectly, to power one of these unfavorable reactions. When an indirect coupling is employed, the energy released by ATP hydrolysis is used to establish another chemical bond with high energy of hydrolysis, e.g. a thioester. This bond is cleaved by a downstream enzyme to energize an unfavorable reaction. Notably, many pathways exhibit reduced ATP requirement as they couple unfavorable carboxylation or carboxyl reduction reactions to exergonic reactions other than ATP hydrolysis. In the most extreme example, the reductive acetyl coenzyme A (acetyl-CoA) pathway bypasses almost all ATP-consuming reactions. On the other hand, the reductive pentose phosphate pathway appears to be the least ATP-efficient because it is the only carbon fixation pathway that invests ATP in metabolic aims other than carboxylation and carboxyl reduction. Altogether, our analysis indicates that basic thermodynamic considerations accurately predict the resource investment required to support a metabolic pathway and further identifies biochemical mechanisms that can decrease this requirement.  相似文献   

8.
9.
10.
11.
Genome-scale metabolic model of Helicobacter pylori 26695   总被引:6,自引:0,他引:6       下载免费PDF全文
A genome-scale metabolic model of Helicobacter pylori 26695 was constructed from genome sequence annotation, biochemical, and physiological data. This represents an in silico model largely derived from genomic information for an organism for which there is substantially less biochemical information available relative to previously modeled organisms such as Escherichia coli. The reconstructed metabolic network contains 388 enzymatic and transport reactions and accounts for 291 open reading frames. Within the paradigm of constraint-based modeling, extreme-pathway analysis and flux balance analysis were used to explore the metabolic capabilities of the in silico model. General network properties were analyzed and compared to similar results previously generated for Haemophilus influenzae. A minimal medium required by the model to generate required biomass constituents was calculated, indicating the requirement of eight amino acids, six of which correspond to essential human amino acids. In addition a list of potential substrates capable of fulfilling the bulk carbon requirements of H. pylori were identified. A deletion study was performed wherein reactions and associated genes in central metabolism were deleted and their effects were simulated under a variety of substrate availability conditions, yielding a number of reactions that are deemed essential. Deletion results were compared to recently published in vitro essentiality determinations for 17 genes. The in silico model accurately predicted 10 of 17 deletion cases, with partial support for additional cases. Collectively, the results presented herein suggest an effective strategy of combining in silico modeling with experimental technologies to enhance biological discovery for less characterized organisms and their genomes.  相似文献   

12.
13.
It is now possible to construct genome-scale metabolic networks for particular microorganisms. Extreme pathway analysis is a useful method for analyzing the phenotypic capabilities of these networks. Many extreme pathways are needed to fully describe the functional capabilities of genome-scale metabolic networks, and therefore, a need exists to develop methods to study these large sets of extreme pathways. Singular value decomposition (SVD) of matrices of extreme pathways was used to develop a conceptual framework for the interpretation of large sets of extreme pathways and the steady-state flux solution space they define. The key results of this study were: 1), convex steady-state solution cones describing the potential functions of biochemical networks can be studied using the modes generated by SVD; 2), Helicobacter pylori has a more rigid metabolic network (i.e., a lower dimensional solution space and a more dominant first singular value) than Haemophilus influenzae for the production of amino acids; and 3), SVD allows for direct comparison of different solution cones resulting from the production of different amino acids. SVD was used to identify key network branch points that may identify key control points for regulation. Therefore, SVD of matrices of extreme pathways has proved to be a useful method for analyzing the steady-state solution space of genome-scale metabolic networks.  相似文献   

14.
The development of high-throughput technologies and the resulting large-scale data sets have necessitated a systems approach to the analysis of metabolic networks. One way to approach the issue of complex metabolic function is through the calculation and interpretation of extreme pathways. Extreme pathways are a mathematically defined set of generating vectors that describe the conical steady-state solution space for flux distributions through an entire metabolic network. Herein, the extreme pathways of the well-characterized human red blood cell metabolic network were calculated and interpreted in a biochemical and physiological context. These extreme pathways were divided into groups based on such criteria as their cofactor and by-product production, and carbon inputs including those that 1) convert glucose to pyruvate; 2) interchange pyruvate and lactate; 3) produce 2,3-diphosphoglycerate that binds to hemoglobin; 4) convert inosine to pyruvate; 5) induce a change in the total adenosine pool; and 6) dissipate ATP. Additionally, results from a full kinetic model of red blood cell metabolism were predicted based solely on an interpretation of the extreme pathway structure. The extreme pathways for the red blood cell thus give a concise representation of red blood cell metabolism and a way to interpret its metabolic physiology.  相似文献   

15.
Metabolic pathway analysis aims at discovering and analyzing meaningful routes and their interactions in metabolic networks. A major difficulty in applying this technique lies in the decomposition of metabolic flux distributions into elementary mode or extreme pathway activity patterns, which in general is not unique. We propose a network reduction approach based on the decomposition of a set of flux vectors representing adaptive microbial metabolic behavior in bioreactors into a minimal set of shared pathways. Several optimality criteria from the literature were compared in order to select the most appropriate objective function. We further analyze photoautotrophic metabolism of the green alga Chlamydomonas reinhardtii growing in a photobioreactor under maximal growth rate conditions. Key pathways involved in its adaptive metabolic response to changes in light influx are identified and discussed using an energetic approach.  相似文献   

16.
A genome-scale metabolic network reconstruction for Clostridium acetobutylicum (ATCC 824) was carried out using a new semi-automated reverse engineering algorithm. The network consists of 422 intracellular metabolites involved in 552 reactions and includes 80 membrane transport reactions. The metabolic network illustrates the reliance of clostridia on the urea cycle, intracellular L-glutamate solute pools, and the acetylornithine transaminase for amino acid biosynthesis from the 2-oxoglutarate precursor. The semi-automated reverse engineering algorithm identified discrepancies in reaction network databases that are major obstacles for fully automated network-building algorithms. The proposed semi-automated approach allowed for the conservation of unique clostridial metabolic pathways, such as an incomplete TCA cycle. A thermodynamic analysis was used to determine the physiological conditions under which proposed pathways (e.g., reverse partial TCA cycle and reverse arginine biosynthesis pathway) are feasible. The reconstructed metabolic network was used to create a genome-scale model that correctly characterized the butyrate kinase knock-out and the asolventogenic M5 pSOL1 megaplasmid degenerate strains. Systematic gene knock-out simulations were performed to identify a set of genes encoding clostridial enzymes essential for growth in silico.  相似文献   

17.
Elementary mode analysis is a useful metabolic pathway analysis tool to identify the structure of a metabolic network that links the cellular phenotype to the corresponding genotype. The analysis can decompose the intricate metabolic network comprised of highly interconnected reactions into uniquely organized pathways. These pathways consisting of a minimal set of enzymes that can support steady state operation of cellular metabolism represent independent cellular physiological states. Such pathway definition provides a rigorous basis to systematically characterize cellular phenotypes, metabolic network regulation, robustness, and fragility that facilitate understanding of cell physiology and implementation of metabolic engineering strategies. This mini-review aims to overview the development and application of elementary mode analysis as a metabolic pathway analysis tool in studying cell physiology and as a basis of metabolic engineering.  相似文献   

18.
We present the computational prediction and synthesis of the metabolic pathways in Methanococcus jannaschii from its genomic sequence using the PathoLogic software. Metabolic reconstruction is based on a reference knowledge base of metabolic pathways and is performed with minimal manual intervention. We predict the existence of 609 metabolic reactions that are assembled in 113 metabolic pathways and an additional 17 super-pathways consisting of one or more component pathways. These assignments represent significantly improved enzyme and pathway predictions compared with previous metabolic reconstructions, and some key metabolic reactions, previously missing, have been identified. Our results, in the form of enzymatic assignments and metabolic pathway predictions, form a database (MJCyc) that is accessible over the World Wide Web for further dissemination among members of the scientific community.  相似文献   

19.
Cell robustness and complexity have been recognized as unique features of biological systems. Such robustness and complexity of metabolic-reaction systems can be explored by discovering, or identifying, the multiple flux distributions (MFD) and redundant pathways that lead to a given external state; however, this is exceedingly cumbersome to accomplish. It is, therefore, highly desirable to establish an effective computational method for their identification, which, in turn, gives rise to a novel insight into the cellular function. An effective approach is proposed for complementarily identifying MFD in metabolic flux analysis and multiple metabolic pathways (MMP) in structural pathway analysis. This approach judiciously integrates flux balance analysis (FBA) based on linear programming and the graph-theoretic method for determining reaction pathways. A single metabolic pathway, with the concomitant flux distribution and the overall reaction manifesting itself as the desired phenotype under some environmental conditions, is determined by FBA from the initial candidate sequence of metabolic reactions. Subsequently, the graph-theoretic method recovers all feasible MMP and the corresponding MFD. The approach's efficacy is demonstrated by applying it to the in silico Escherichia coli model under various culture conditions. The resultant MMP and MFD attaining a unique external state reveal the surprising adaptability and robustness of the intricate cellular network as a key to cell survival against environmental or genetic changes. These results indicate that the proposed approach would be useful in facilitating drug discovery.  相似文献   

20.
Arthrobacter sp. CGMCC 3584 are able to produce cAMP from glucose by the purine synthesis pathway via de novo or salvage biosynthesis. In order to gain an improved understanding of its metabolism, 13C-labeling experiment and gas chromatography–mass spectrometry (GC–MS) analysis were employed to determine the metabolic network structure and estimate the intracellular fluxes. GC–MS analysis helps to reflect the activity of the intracellular pathways and reactions. The metabolic network mainly contains glycolytic and pentose phosphate pathways, the tricarboxylic acid cycle, and the inactive glyoxylate shunt. Hypoxanthine as a precursor of cAMP and sodium fluoride as an inhibitor of glycolysis were found to increase the cAMP production, as well as the flux through the PP pathway. The effects of adding hypoxanthine and sodium fluoride are discussed based on the enzyme assays and metabolic flux analysis. In conclusion, our results provide quantitative insights into how cells manipulate the metabolic network under different culture conditions and this may be of value in metabolic regulation for desirable production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号