首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (beta-tubulin IV), nonciliated (CCSP), and distal epithelial cell (SP-C, T1alpha) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (alpha-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium.  相似文献   

2.
 Hoxb-5 is one of the few homeobox genes strongly expressed in the developing mouse lung. To explore the hypothesis that Hoxb-5 acts to regulate epithelial cell fate and branching morphogenesis in the developing lung, we studied the temporal, spatial, and cell-specific expression of Hoxb-5 from gestational day (d) 13.5 to postnatal day (P) 2. Immunocytochemistry demonstrated regional localization of Hoxb-5 protein to developing conducting airways and surrounding mesenchyme. The cellular expression pattern changed from diffusely positive nuclei of mesenchymal cells on d13.5 to become more localized to nuclei of subepithelial fibroblasts and some adjacent columnar and cuboidal epithelial cells on d14.5. After d14.5, Hoxb-5 protein expression continued to decrease in mesenchymal cells distal from developing airways, but persisted in fibroblasts underlying conducting airways. Hoxb-5 protein expression persisted in nuclei of columnar and cuboidal epithelial cells on d16.5 and d17.5, with expression in low cuboidal epithelial cells as well from d17.5 to P2. Western blot analysis showed temporal and quantitative changes in Hoxb-5 protein expression with peak expression on d14.5–15.5. We conclude that Hoxb-5 protein is developmentally regulated in a temporal, spatial, and cell-specific manner throughout the pseudoglandular, canalicular, and terminal saccular periods of lung development in the mouse. This localization and expression pattern suggests that Hoxb-5 may influence branching morphogenesis, cell–cell communication, cell fate, and differentiation of conducting airway epithelia. Accepted: 5 May 1997  相似文献   

3.
Transforming growth factor (TGF)-beta is a family of multifunctional cytokines controlling cell growth, differentiation, and extracellular matrix deposition in the lung. The biological effects of TGF-beta are mediated by type I (TbetaR-I) and II (TbetaR-II) receptors. Our previous studies show that the expression of TbetaR-II is highly regulated in a spatial and temporal fashion during lung development. In the present studies, we investigated the temporal-spatial pattern and cellular expression of TbetaR-I during lung development. The expression level of TbetaR-I mRNA in rat lung at different embryonic and postnatal stages was analyzed by Northern blotting. TbetaR-I mRNA was expressed in fetal rat lungs in early development and then decreased as development proceeded. The localization of TbetaR-I in fetal and postnatal rat lung tissues was investigated by using in situ hybridization performed with an antisense RNA probe. TbetaR-I mRNA was present in the mesenchyme and epithelium of gestational day 14 rat lungs. An intense TbetaR-I signal was observed in the epithelial lining of the developing bronchi. In gestational day 16 lungs, the expression of TbetaR-I mRNA was increased in the mesenchymal tissue. The epithelium in both the distal and proximal bronchioles showed a similar level of TbetaR-I expression. In postnatal lungs, TbetaR-I mRNA was detected in parenchymal tissues and blood vessels. We further studied the expression of TbetaR-I in cultured rat lung cells. TbetaR-I was expressed by cultured rat lung fibroblasts, microvascular endothelial cells, and alveolar epithelial cells. These studies demonstrate a differential regulation and localization of TbetaR-I that is different from that of TbetaR-II during lung development. TbetaR-I, TbetaR-II, and TGF-beta isoforms exhibit distinct but overlapping patterns of expression during lung development. This implies a distinct role for TbetaR-I in mediating TGF-beta signal transduction during lung development.  相似文献   

4.
Lung development is a highly regulated process directed by mesenchymal-epithelial interactions, which coordinate the temporal and spatial expression of multiple regulatory factors required for proper lung formation. The Iroquois homeobox (Irx) genes have been implicated in the patterning and specification of several Drosophila and vertebrate organs, including the heart. Herein, we investigated whether the Irx genes play a role in lung morphogenesis. We found that Irx1-3 and Irx5 expression was confined to the branching lung epithelium, whereas Irx4 was not expressed in the developing lung. Antisense knockdown of all pulmonary Irx genes together dramatically decreased distal branching morphogenesis and increased distention of the proximal tubules in vitro, which was accompanied by a reduction in surfactant protein C-positive epithelial cells and an increase in beta-tubulin IV and Clara cell secretory protein positive epithelial structures. Transmission electron microscopy confirmed the proximal phenotype of the epithelial structures. Furthermore, antisense Irx knockdown resulted in loss of lung mesenchyme and abnormal smooth muscle cell formation. Expression of fibroblast growth factors (FGF) 1, 7, and 10, FGF receptor 2, bone morphogenetic protein 4, and Sonic hedgehog (Shh) were not altered in lung explants treated with antisense Irx oligonucleotides. All four Irx genes were expressed in Shh- and Gli(2)-deficient murine lungs. Collectively, these results suggest that Irx genes are involved in the regulation of proximo-distal morphogenesis of the developing lung but are likely not linked to the FGF, BMP, or Shh signaling pathways.  相似文献   

5.
Follistatin like-1 (Fstl1) is a secreted glycoprotein and can be up-regulated by TGF-β1. To better study the function of Fstl1 in lung development, we examined Fstl1 expression in the developing lung, in a cell type specific manner, using a tamoxifen inducible Fstl1-reporter mouse strain. Our results show that Fstl1 is ubiquitously expressed at saccular stage in the developing lung. At E18.5, Fstl1 expression is robust in most type of mesenchymal cells, including airway smooth muscle cells surrounding airways, vascular smooth muscle cells, endothelial cells, and vascular pericytes from blood vessel, but not PDGFRα+ fibroblasts in the distal alveolar sacs. Meanwhile, relative weak and sporadic signals of Fstl1 expression are observed in epithelium, including a subgroup of club cells in proximal airways and a few type II alveolar epithelial cells in distal airways. Our data help to understand the critical role of Fstl1 in lung development and lung disease pathogenesis.  相似文献   

6.
Carcinomas are widely thought to derive from epithelial cells with malignant progression often associated with an epithelial-mesenchymal transition (EMT). We have characterized tumors generated by spontaneously transformed human mesenchymal cells (TMC) previously obtained in our laboratory. Immunohistopathological analyses identified these tumors as poorly differentiated carcinomas, suggesting that a mesenchymal-epithelial transition (MET) was involved in the generation of TMC. This was corroborated by microarray and protein expression analysis that showed that almost all mesenchymal-related genes were severely repressed in these TMC. Interestingly, TMC also expressed embryonic antigens and were able to integrate into developing blastocysts with no signs of tumor formation, suggesting a dedifferentiation process was associated with the mesenchymal stem cell (MSC) transformation. These findings support the hypothesis that some carcinomas are derived from mesenchymal rather than from epithelial precursors.  相似文献   

7.
The lungs are divided, both structurally and functionally, into two distinct components, the proximal airways, which conduct air, and the peripheral airways, which mediate gas exchange. The mechanisms that control the specification of these two structures during lung development are currently unknown. Here we show that beta-catenin signaling is required for the formation of the distal, but not the proximal, airways. When the gene for beta-catenin was conditionally excised in epithelial cells of the developing mouse lung prior to embryonic day 14.5, the proximal lung tubules grew and differentiated appropriately. The mice, however, died at birth because of respiratory failure. Analysis of the lungs by in situ hybridization and immunohistochemistry, using molecular markers of the epithelial and mesenchymal components of both proximal and peripheral airways, showed that the lungs were composed primarily of proximal airways. These observations establish, for the first time, both the sites and timing of specification of the proximal and peripheral airways in the developing lung, and that beta-catenin is one of the essential components of this specification.  相似文献   

8.
Pulmonary neuroendocrine tumors (NETs) are traditionally described as comprising a spectrum of neoplasms, ranging from low grade typical carcinoids (TCs) via the intermediate grade atypical carcinoids (ACs) to the highly malignant small cell lung cancers (SCLCs) and large cell neuroendocrine carcinomas (LCNECs). Recent data, however, suggests that two categories can be distinguished on basis of molecular and clinical data, i.e. the high grade neuroendocrine (NE) carcinomas and the carcinoid tumors. Bronchial carcinoids and SCLCs may originate from the same pulmonary NE precursor cells, but a precursor lesion has only been observed in association with carcinoids, termed diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. The occurrence of mixed tumors exclusively comprising high grade NE carcinomas also supports a different carcinogenesis for these two groups. Histopathologically, high grade NE lung tumors are characterized by high mitotic and proliferative indices, while carcinoids are defined by maximally 10 mitoses per 2mm(2) (10 high-power fields) and rarely have Ki67-proliferative indices over 10%. High grade NE carcinomas are chemosensitive tumors, although they usually relapse. Surgery is often not an option due to extensive disease at presentation and early metastasis, especially in SCLC. Conversely, carcinoids are often insensitive to chemo- and radiation therapy, but cure can usually be achieved by surgery. A meta-analysis of comparative genomic hybridization studies performed for this review, as well as gene expression profiling data indicates separate clustering of carcinoids and carcinomas. Chromosomal aberrations are much more frequent in carcinomas, except for deletion of 11q, which is involved in the whole spectrum of NE lung tumors. Deletions of chromosome 3p are rare in carcinoids but are a hallmark of the high grade pulmonary NE carcinomas. On the contrary, mutations of the multiple endocrine neoplasia type 1 (MEN1) gene are restricted to carcinoid tumors. Many of the differences between carcinoids and high grade lung NETs can be ascribed to tobacco consumption, which is strongly linked to the occurrence of high grade NE carcinomas. Smoking causes p53 mutations, very frequently present in SCLCs and LCNECs, but rarely in carcinoids. It further results in other early genetic events in SCLCs and LCNECs, such as 3p and 17p deletions. Smoking induces downregulation of E-cadherin and associated epithelial to mesenchymal transition. Also, high grade lung NETs display higher frequencies of aberrations of the Rb pathway, and of the intrinsic and extrinsic apoptotic routes. Carcinoid biology on the other hand is not depending on cigarette smoke intake but rather characterized by aberrations of other specific genetic events, probably including Menin or its targets and interaction partners. This results in a gradual evolution, most likely from proliferating pulmonary NE cells via hyperplasia and tumorlets towards classical carcinoid tumors. We conclude that carcinoids and high grade NE lung carcinomas are separate biological entities and do not comprise one spectrum of pulmonary NETs. This implies the need to reconsider both diagnostic as well as therapeutic approaches for these different groups of malignancies.  相似文献   

9.
The human cell-surface antigen epithelial glycoprotein-2 recognized by the monoclonal antibody MOC-31 is an epithelial tumour-associated glycoprotein expressed in non-squamous carcinomas. MOC-31 immunoreactivity was investigated in human breast, colon, ovarian and lung cancer cell lines, grown either in vitro or in severe combined immunodeficient (SCID) mice as solid tumours and/or metastases. Three of four small-cell lung cancer cell lines (NCI-H69, OH3 and SW2) and three of four ovarian cancer cell lines (SoTü 1, 3 and 4) expressed epithelial glycoprotein-2. In contrast, all three breast (MCF-7, BT20, T47D) and all three colon (HT29, CACO2, SW480) cancer cell lines strongly reacted with monoclonal antibody MOC-31. A notable difference in MOC-31 immunoreactivity was observed in spontaneously formed lung metastases of HT29 colon cancer cells. Whereas larger metastases (> 30 cells) re acted with a similar staining pattern to the primary tumour, smaller metastases did not. These findings indicate that differentiation processes during the epithelial–mesenchymal transition occur in metastases, which lead to a transient loss of epithelial glycoprotein-2 expression during the migratory and early post- migratory period. This loss of antigen expression indicates that the process of metastases formation is a regulatory event, and this transient loss of antigen expression might represent a potential obstacle to antibody-based therapy in the setting of minimal residual disease.  相似文献   

10.
Sproutys and Sprouty-related proteins, Spred-1 and -2, are known inhibitors of fibroblast growth factor (FGF) signaling, which plays key role in lung branching morphogenesis and the development of other tissues. The present study demonstrates that Spreds are expressed in a variety of rat embryonic tissues (brain, intestine, heart, skin) including the lung. In the embryonic lung, Spreds and Sproutys are expressed during the early stages of branching morphogenesis, but their expression profiles are both distinct and overlapping. Spreds are predominantly expressed in mesenchymal cells in contrast to Sproutys, which are abundantly expressed in epithelial cells. Spred expression is especially strong in the regions of new bud formation both in the peripheral mesenchyme as well as in the epithelium. The peripheral region also expresses FGF-10 in the mesenchymal cells and FGF-9 in the mesothelial cells. The expression profiles suggest that Spreds, Sproutys and FGF-9/FGF-10 are part of epithelial-mesenchymal interactions, which are essential for the development and maintenance of normal lung branching pattern.  相似文献   

11.
Sproutys and Sprouty-related proteins, Spred-1 and -2, are known inhibitors of fibroblast growth factor (FGF) signaling, which plays key role in lung branching morphogenesis and the development of other tissues. The present study demonstrates that Spreds are expressed in a variety of rat embryonic tissues (brain, intestine, heart, skin) including the lung. In the embryonic lung, Spreds and Sproutys are expressed during the early stages of branching morphogenesis, but their expression profiles are both distinct and overlapping. Spreds are predominantly expressed in mesenchymal cells in contrast to Sproutys, which are abundantly expressed in epithelial cells. Spred expression is especially strong in the regions of new bud formation both in the peripheral mesenchyme as well as in the epithelium. The peripheral region also expresses FGF-10 in the mesenchymal cells and FGF-9 in the mesothelial cells. The expression profiles suggest that Spreds, Sproutys and FGF-9/FGF-10 are part of epithelial-mesenchymal interactions, which are essential for the development and maintenance of normal lung branching pattern.  相似文献   

12.
We studied the expression of villin, a microfilament-associated, actin-binding protein typical of brush-border microvilli, in a variety of human carcinomas by applying immunofluorescence microscopy to frozen sections and immunoblotting methods to tissue extracts using a rabbit antiserum and a monoclonal antibody specific for villin. All of the 24 primary and metastatic colorectal adenocarcinomas tested were uniformly and strongly positive for villin, with the immunocytochemical labeling concentrated at the luminal cell margin. In poorly differentiated tumor areas, rudimentary tubules were stained. All of the six tubular adenocarcinomas of the stomach studied as well as two adenocarcinomas of the gall bladder and a hepatocellular carcinoma were also villin-positive. Villin was detectable in 12 of 14 adenocarcinomas of the pancreas; in some of these cases, its distribution was heterogeneous. Among 21 renal cell carcinomas investigated, positivity for villin was seen in nine of 13 clear cell tumors (especially those of grade II), and in all four chromophilic cell tumors; however, all four chromophobe cell tumors studied were negative. Four of 11 endometrial but none of nine ovarian carcinomas were (uniformly or focally) villin positive. Of 18 adenocarcinomas of the lung studied, one was uniformly and four focally positive for villin, while the remainder were negative. All of the other epithelial tumors studied, including 12 adenocarcinomas of the breast and seven epithelial or biphasic pleural mesotheliomas, were villin negative. Our results show that the expression of villin in intestinal epithelial cells is consistently maintained in their corresponding carcinomas, even when the organized brush-border structure has been lost. The presence of villin in some endometrial and pulmonary adenocarcinomas--in contrast to its absence in the respective normal epithelia--suggests that this protein is newly expressed during hyperplasia, dysplasia, or carcinogenesis. Determining the presence or absence of villin and its immunocytochemical staining pattern in metastatic adenocarcinomas may be of some help in determining the type and site of the primary tumor.  相似文献   

13.
The distal epithelium of the developing lung exhibits high-level expression of protein phosphatase 2A (PP2A), a vital signaling enzyme. Here we report the discovery that in the lung, the PP2A regulatory subunit B56gamma is expressed in a discrete developmental period, with the highest protein levels at embryonic day (e) 17, but no detectable protein in the newborn or adult. By in situ hybridization, B56gamma was highly expressed in the distal epithelium of newly forming airways and in mesenchymal cells. In contrast, expression of B56gamma was quite low in the bronchial epithelium and vascular smooth muscle. Transgenic expression of B56gamma using the lung-specific promoter for surfactant protein C (SP-C) resulted in neonatal death. Examination of lungs from SP-C-B56gamma transgenic e18 fetuses revealed proximal airways and normal blood vessels, but the tissue was densely populated with epithelial-type cells and was devoid of normal peripheral lung structure. A component of the Wnt signaling pathway, beta-catenin, was developmentally regulated in the normal lung and was absent in lung tissue from B-56gamma transgenic fetuses. We propose that B56gamma is expressed at a particular stage of lung development to modulate PP2A action on the Wnt/beta-catenin signaling pathway during lung airway morphogenesis.  相似文献   

14.
Caveolin-1 is a scaffolding protein component of caveolae, membrane invaginations involved in endocytosis, signal transduction, trans- and intracellular trafficking, and protein sorting. In adult lung, caveolae and caveolin-1 are present in alveolar endothelium and Type I epithelial cells but rarely in Type II cells. We have analyzed patterns of caveolin-1 expression during mouse lung development. Two caveolin-1 mRNAs, full-length and a 5' variant that will translate mainly into caveolin-1alpha and -beta isoforms, are detected by RT-PCR at embryonic day 12 (E12) and afterwards in the developing and adult lung. Immunostaining analysis, starting at E10, shows caveolin-1alpha localized in primitive blood vessels of the forming lung, in an overlapping pattern to the endothelial marker PECAM-1, and later in all blood vessels. Caveolin-1alpha is not detected in fetal or neonatal lung epithelium but is detected in adult epithelial Type I cells. Caveolin-1 was previously shown to be expressed in alveolar Type I cells. These data suggest that expression of caveolin-1 isoforms is differentially regulated in endothelial and epithelial cells during lung development. Caveolin-1alpha is an early marker for lung vasculogenesis, primarily expressed in developing blood vessels. When the lung is fully differentiated postnatally, caveolin-1alpha is also expressed in alveolar Type I cells.  相似文献   

15.
Pulmonary endocrine cells of Syrian golden hamster were stained for neural cell adhesion molecule (NCAM) with indirect fluorescent immunostaining and observed with a confocal laser scanning microscope equipped with an argon laser. Sections 100 m thick of hamster lung fixed with phosphate-buffered 4% paraformaldehyde were prepared. The sections were incubated with rat monoclonal antibody against NCAM, followed by fluorescence-labeled antibody against rat immunoglobulin. Some were doubly immunostained for NCAM and one of the following endocrine markers: neuron-specific enolase, calcitonin gene-related peptide and serotonin. Expression of NCAM in the hamster airway epithelium was seen in cell nests resembling neuroepithelial bodies (NEBs). NCAM immunostaining was positive at the lateral cell borders between the cells composing the nest, but negative at the border with the adjacent, presumably non-endocrine cells. Double immunostaining confirmed that the grouped cells with NCAM immunoreactivity were of an endocrine nature, but that single endocrine cells did not show NCAM immunoreactivity. An electron microscopic study with NCAM immunostaining confirmed the light microscopic study. These suggest that NCAM expression could be important for the morphogenesis of NEBs. A confocal laser microscope was used to make theee-dimensional images of NEBs after NCAM immunostaining and the spatial interaction between NEBs and the surrounding microenvironment was studied.  相似文献   

16.
17.
The ERBA beta gene codes for a DNA-binding thyroid hormone receptor (THR) and maps to chromosome 3p21-p25, overlapping a 3p deletion characterizing small-cell lung carcinoma (SCLC). A DNA clone detecting an RFLP at the ERBA beta locus has been used to probe a large number of lung tumors. Virtually all SCLC had lost heterozygosity, showing that the 3p deletion in SCLC includes this gene. A substantial but smaller proportion of non-small-cell carcinomas had lost heterozygosity at ERBA beta. Among all non-small-cell tumors some had lost heterozygosity at the proximal locus DNF15S2 (band 3p21) but not at ERBA beta, whereas none were found where the reverse was true. Therefore, the locus which plays a role in non-small-cell tumorigenesis probably lies closer to DNF15S2 than to ERBA beta and is almost certainly not the latter.  相似文献   

18.
MUC1 is a transmembrane glycoprotein, apically expressed in most epithelial cells, used in the differential diagnosis of carcinomas and for discrimination of tumors of non-epithelial origin showing epithelioid features. Little attention has been paid so far though, on its possible significance in embryonic tissues. A preliminary study from our group revealed MUC1 expression in the cap mesenchymal cells during human nephrogenesis, suggesting a role for MUC1 in the process of mesenchymal-to-epithelial transition. This study aimed at investigating the expression pattern of MUC1 in various developing structures of human fetal kidney. Expression of MUC1 was examined in kidneys of 5 human fetuses. MUC1 immunoreactivity was detected in ureteric bud tips, in collecting tubules, in cap mesenchymal cells undergoing the initial phases of mesenchymal-to-epithelial transition, in renal vesicles, comma-bodies, and S-shaped bodies. Our previous preliminary report suggested a role for MUC1 in the initial phases of the process of mesenchymal-to-epithelial transition. The present data suggest that MUC1 expression characterizes multiple structures during human nephrogenesis, from the ureteric bud, to the initial phases of mesenchymal-to-epithelial transition and that MUC1 should be added to the genes activated during the process of mesenchymal-to-epithelial transition in the cap mesenchyme of human kidney.Key words: MUC1, immunohistochemistry, fetal kdney, nephrogenesis, renal vesicles, comma and S-shaped bodies, collecting tubules.  相似文献   

19.
O Amano  H Abe  H Kondo 《Acta anatomica》1991,141(3):212-219
The occurrence of nerve growth factor receptor (NGFR) immunoreactivity was newly demonstrated in mesenchymal cells of lung bud and lateral palatine processes. Nerve fibers and enclosing Schwann cells with or without immunoreaction were present only in the periphery of the immunoreactive mesenchymal cell aggregation, but were not found within them. The NGFR-immunoreactive cells in immature skeletal muscles were revealed by immunoelectron microscopy to be perimysial cells without myofilament bundles, but not myoblastic cells. NGFR immunoreactivity was detected in noninnervated epithelial cells performing the invagination such as epithelial cells of the renal glomerulus and the lens placode. The immunoreactivity was also expressed in the innermost cells of the theca cell layer of the postnatal ovary and they contained no lipid droplets. In postnatal lymphatic tissues, NGFR-immunoreactive cells were identified as the interdigitating cells which were located in the internodular and deep cortex of the lymph nodes, in the marginal zone of the splenic white pulp, and in the medulla of the thymus. These findings suggest a potentially more widespread involvement of nerve growth factor and NGFR in the program of ontogeny than expected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号