首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azotobacter vinelandii takes up the ammonium analog methylammonium from the external medium and metabolizes it to a less polar compound which has been identified as N-methylglutamine. The enzyme glutamine synthetase appears responsible for methylammonium metabolism in this organism and full activity of the enzyme is required for maximal rates of methylammonium uptake. L-methionine-DL-sulfoximine or L-methionine sulfone, inhibitors of glutamine synthetase activity, were shown to reduce the rate of methylammonium uptake by wild type cultures. A mutant strain with low glutamine synthetase activity was shown to be unable to carry out in vitro N-methylglutamine synthesis or in vivo uptake of methylammonium. Thus, methylammonium uptake assays may prove useful as a method of identifying mutants with altered glutamine synthetase activity.Abbreviations MSX L-methionine-DL-sulfoximine - MSF L-methionine sulfone  相似文献   

2.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

3.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

4.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

5.
When continuous cultures of Azotobacter vinelandii were supplied with ammonium or nitrate in amounts, which just repressed nitrogenase synthesis completely, both the intracellular glutamine level and the degree of adenylylation of the glutamine synthetase (GS) increased only slightly (from 0.45–0.50 mM and from 2 to 3 respectively), while the total GS level remained unaffected. Higher amounts of ammonium additionally inhibited the nitrogenase activity, caused a strong rise in the intracellular glutamine concentration and adenylylation of the GS, but caused no change in the ATP/ADP ratio. These results are considered as evidence that in A. vinelandii the regulation of nitrogenase synthesis is not linked to the adenylylation state of the GS and to the intracellular glutamine level, and that the inhibition of the nitrogenase activity as a consequence of a high extracellular ammonium level is not mediated via a change in the energy charge.Abbreviations GS glutamine synthetase - GS-S(Mg) Mg2+ dependent synthetic activity of GS - GS-T(Mn) Mn2+ dependent transferase activity of GS  相似文献   

6.
Mutants of Anabaena 7120 defective in glutamine synthetase (GS) activity were isolated following transposon mutagenesis. Mutants M11, M55 and M73 showed about 60% less GS activity in N2-grown aerobic cultures than the wild-type strain and were resistant to the glutamate analogue l-methionine-dl-sulphoximine (MSX). These mutants had the capacity to excrete N2-fixed ammonia continuously into the culture medium and showed an enhanced level of aerobic nitrogenase activity. The intracellular ammonium pool generated in N2-grown cells of mutants was found to be less than that of the wild-type strain. Similarly, ammonium uptake by these mutants was 50% less in mutants compared to the wild-type, suggesting a possible role of GS in controlling this function.  相似文献   

7.
Nitrogen assimilation in Rhodobacter capsulatus has been shown to proceed via the coupled action of glutamine synthetase (GS) and glutamate synthase (GOGAT) with no measurable glutamate dehydrogenase (GDH) present. We have recently isolated a novel class of mutants of R. capsulatus strain B100 that lacks a detectable GOGAT activity but is able to grow at wild type rates under nitrogen-fixing conditions. While NH 4 + -supported growth in the mutants was normal under anaerobic/photosynthetic conditions, the growth rate was decreased under aerobic conditions. Ammonium and methylammonium uptake experiments indicated that there was a clear difference in the ammonium assimilatory capabilities in these mutants under aerobic versus anaerobic growth. Regulation of expression of a nifH : : lacZ fusion in these mutants was not impaired. The possible existence of alternative ammonium assimilatory pathways is discussed.  相似文献   

8.
Two pathways of ammonium assimilation are known in bacteria, one mediated by glutamate dehydrogenase, the other by glutamine synthetase and glutamate synthase. The activities of these three enzymes were measured in crude extracts from four Rhizobium meliloti wild-type strains, 2011, M15S, 444 and 12. All the strains had active glutamine synthetase and NADP-linked glutamate synthase. Assimilatory glutamate dehydrogenase activity was present in strains 2011, M15S, 444, but not in strain 12. Three glutamate synthase deficient mutants were isolated from strain 2011. They were unable to use 1 mM ammonium as a sole nitrogen source. However, increased ammonium concentration allowed these mutants to assimilate ammonium via glutamate dehydrogenase. It was found that the sole mode of ammonium assimilation in strain 12 is the glutamine synthetase-glutamate synthase route; whereas the two pathways are functional in strain 2011.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase  相似文献   

9.
The energy-dependent urea permease was studied in two strains ofPseudomonas aeruginosa, measuring the uptake (transport and metabolism) of14C-urea. In both strains urea uptakein vivo and urease activityin vitro differed significantly with respect to kinetic parameters, temperature and pH dependence and response to metabolic inhibitors. Ammonium strongly interfered both with the expression of the urea uptake system and its activity. The inhibition of the uptake activity by ammonium was partially relieved by hydraziniumsulfate, which prevented the translocation of ammonium into the cell, and in a methylammonium/ammonium transport-defective mutant of strain DSM 50071. Furthermore, methionine-sulfoximine, which prevented the intracellular glutamine formation from ammoniumvia inhibition of glutamine synthetase, relieved the inhibition of urea uptake by ammonium. These findings suggested that urea uptake activity inP. aeruginosa is regulated by intracellular glutamine.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide - GS glutamine synthetase - MSX methionine-sulfoximine  相似文献   

10.
Four from 18 strains of Erwinia herbicola tested had nitrogenase activity and grew with N2 as sole source of nitrogen under strict anaerobic conditions with a doubling time of 20–24 h. Nitrogenase activity started only 96–120 h after transfer to a special medium maintained under anaerobic conditions. A ten fold increase in protein per culture found after the maximum nitrogenase activity of 80–130 nmol C2H4. mg protein-1·min-1 was accompanied by a fall in pH of the medium (20 mM phosphate buffer and in 125 mM Tris-buffer) from pH 7.2 to 5.4 or less, but only to 6.8 in 100 mM phosphate buffer. In all cases we found a sharp curtailing of nitrogenase activity 48 h after the maximum. The bacteria utilized only 35–50% of the nitrogen fixed for growth. Erwinia herbicola strains differed from two strains of Enterobacter agglomerans in being unable to fix nitrogen on agar surfaces exposed to air. Specific nitrogenase activity in Erwinia herbicola is compared with data reported for other Enterobacteriaceae and is found to be higher than that reported for Klebsiella pneumoniae, Enterobacter cloacae or Citrobacter freundii.  相似文献   

11.
NH 4 + excretion was undetectable in N2-fixing cultures ofRhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH 4 + to the medium. The glutamate analog,l-methionine-dl-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH 4 + . When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH 4 + . Nitrogenase activities and NH 4 + production from fixed N2 were increased considerably when a combined nitrogen source, NH 4 + (>40 moles NH 4 + /mg cell protein in 6 days) orl-glutamate (>60 moles NH 4 + /mg cell protein in 6 days) was added to the cultures together with MSX.Biochemical analysis revealed thatR. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH 4 + as well as by glutamate.The results demonstrate that utilization of solar energy to photoproduce large quantities of NH 4 + from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

12.
13.
No active uptake of ammonium was detected in Proteus vulgaris, Bacillus pasteurii, and Sporosarcina ureae, which indicates that these bacteria depend on the passive diffusion of ammonia across the cell membrane. In P. vulgaris the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway and glutamate dehydrogenase (GDH) were present, and these enzymes exhibited high affinities for ammonium. In B. pasteurii and S. ureae, however, no GS activity was detected, and GOGAT activity was only present in S. ureae. GDH enzymes were present in these two organisms, but showed only low affinity for ammonium, with apparent K m-values of 55.2 mM in B. pasteurii and 36.7 mM in S. ureae, repectively. These observations explain why P. vulgaris is able to grow at neutral pH and low ammonium concentration (2 mM), while B. pasteurii and S. ureae require high ammonium concentration (40 mM) and alkaline pH for growth.Non-standard abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - GT glutamyl transferase - MA methylammonium - NB nutrient broth - YE yeast extract - NA nocotinic acid  相似文献   

14.
Extractable glutamine synthetase activity of the cyanobacterium Anabaena cylindrica was reduced by approximately 50% when N2-fixing cultures were treated with 10 mM NH 4 + or were placed in darkness. The deactivated enzyme could be rapidly reactivated (within 5 min) by adding 40 mM 2-mercaptoethanol to the biosynthetic reaction mixture. The enzyme could also be reactivated in vivo by replacing the culture in light or by removing NH 4 + . When the enzyme was deactivated by simultaneously adding NH 4 + and placing the culture in darkness, reactivation occurred on reillumination and removal of NH 4 + . The removal of NH 4 + in darkness did not result in reactivation. On in vitro reactivation of glutamine synthetase from dark or NH 4 + -treated cultures the maximum glutamine synthetase activity observed frequently exceeded that of glutamine synthetase extracted from untreated cultures. Anacystis nidulans showed a similar type of reversible dark deactivation to A. cylindrica but Plectonema boryanum and a Nostoc did not. With A. cylindrica, a direct positive correlation between the size of the intracellular pool of glutamate and biosynthetic glutamine synthetase activity occurred during light/dark shifts, and on treatment with NH 4 + . The changes in activity of glutamine synthetase in A. cylindrica in response to light resemble in some respects the light modulation of enzymes of the oxidative and reductive pentose phosphate pathways noted in cyanobacteria by others.  相似文献   

15.
Inorganic nitrogen metabolism in the obligate anaerobic thermophiles Chlostridium thermosaccharolyticum and Clostridium thermoautotrophicum differs in several respects. C. thermosaccharolyticum contains a nitrogenase as inferred from NH 4 + repressible C2H2 reduction, a glutamine synthetase which is partially repressed by ammonium, very labile glutamate synthase activities with both NADH and NADPH, NADPH-dependent glutamate dehydrogenase, and NH 4 + -dependent asparagine synthetase. C. thermoautotrophicum contains no nitrogenase, but glutamine synthetase, no glutamate synthase, no glutamate dehydrogenase, but a NADH-dependent alanine dehydrogenase and a NH 4 + -dependent asparagine synthetase.Abbreviation GOGAT glutamine-oxoglutarate amidotransferase amidotransferase (glutamate synthase)  相似文献   

16.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

17.
Summary Hairy roots of Brassica napus (rape cv. Giant) were produced by cocultivating leaf and cotyledon explants with Agrobacterium rhizogenes strain A4T. The hairy roots grew prolifically on solid and in liquid media. Incorporation of ammonium sulphate or phosphinothricin (PPT) into the media reduced growth. PPT treatment reduced glutamine synthetase (GS) activity and increased the ammonia content of the hairy roots. We have found that PPT treatment also induces a loss of glutamine from the roots and this may influence root growth. To test this we grew hairy roots in a liquid medium containing 10 mM glutamine. This glutamine treatment overcame the PPT induced suppression of growth but also significantly increased GS activity, reduced ammonia accumulation and increased the levels of glutamate and asparagine.  相似文献   

18.
Nutritional factors controlling derepression of nitrogenase activity in Parasponia-Rhizobium strain ANU 289 were studied in stationary and agitated liquid cultures. Altering type and/or concentrations of the constituents of the derepression medium in respect of carbon and nitrogen sources influenced both derepression kinetics as well as the maximal level of activity. Hexose sugars and disaccharides stimulated nitrogenase activity three to six-fold compared to pentose sugars. Activity was also modulated by combining sugars with some organic acids such as succinate, fumarate and pyruvate but not with others (e.g. -ketoglutarate, malate, malonate). Of the range of nitrogen sources tested, either casamino acids (at 0.05%, but not at 0.1%), glutamate, proline or to a lesser extent histidine (each at 5 mM N) supported significant derepression of nitrogenase activity. Notably glutamine, urea, alanine, ammonium sulfate, nitrate, nitrite (each at 5 mM N) and yeast extract (0.05%) failed to derepress or support nitrogenase activity. Ammonium (5 mM) abolished established nitrogenase activity of rapidly agitated cultures within 15 h after addition. This inhibitory effect was alleviated by the addition of methionine sulfoximime (10 mM). Thus, in view of strong glutamine effects, ammonium repression appears to be mediated by glutamine and not by ammonium itself.Abbreviations HEPES [4-(2-hydroxyethyl)-1-piperazine-ethane; sulfonic acid] - MOPS [3-(N-morpholino) propane sulphonic acid] - MSX Methionine sulfoximine  相似文献   

19.
Specific nitrogenase activity inAzospirillum brasilense ATCC 29145 in surface cultures under air is enhanced from about 50 nmol C2H4·mg protein-1·h-1 to 400 nmol C2H4 by the addition of 1 mM phenol. 0.5 and 2 mM phenol added increase the rate 5-fold and 4-fold. This enhancement effect is observed only between 2 and 3 days after inoculation, with only a small reduction of the growth of the cells by the phenol added. In surface cultures under 1% O2, nitrogenase activity is slightly reduced by the addition of 1–0.01 mM phenol. Utilization of succinate is enhanced during the period of maximum enhancement of nitrogenase activity by 60% by addition of 1 mM phenol. The cells did not produce14CO2 from [U-14C] phenol, neither in surface cultures nor in liquid cultures and less than 0.1% of the phenol was incorporated into the cells. A smaller but significant enhancement of nitrogenase activity by about 100% in surface cultures under air was found withKlebsiella pneumoniae K 11 after addition of 1 mM phenol. However, inRhizobium japonicum 61-A-101 all phenol concentrations above 0.01 mM reduced nitrogenase activity. With 1 mM phenol added activity was reduced to less than 10% with no effect on the growth in the same cultivation system. With thisRhizobium japonicum strain significant quantities of phenol (25 mol in 24 h by 2·1012 cells) were metabolized to14CO2, with phenol as sole carbon source. WithAzospirillum brasilense in liquid culture under 1% and 2% O2 in the gas phase, no enhancement of nitrogenase activity by phenol was noticed.  相似文献   

20.
Investigations of the uptake of ammonium (NH 4 + ) by Rhodopseudomonas capsulata B100 supported the presence of an NH 4 + transport system. Experimentally NH 4 + was determined by electrode or indophenol assay and saturation kinetics were observed with two apparent K m's of 1.7 M and 11.1 M (pH 6.8, 30°) and a V max at saturation of 50–60 nmol/min·mg protein. The optimum pH and temperature were 7.0 and 33° C, respectively. The Q10 quotient was calculated to be 1.9 at 100 M NH 4 + , indicating enzymatic involvement. In contrast to the wild type, B100, excretion of NH 4 + , not uptake, was observed in a glutamine auxotroph, R. capsulata G29, which is derepressed for nitrogenase and lacks glutamine synthetase activity. G29R1, a revertant of G29, also took up NH 4 + at the same rate as wild type and had fully restored glutamine synthetase activity. Partially restored derivatives, G29R5 and G29R6, grew more slowly than wild type on NH 4 + as the nitrogen source, remained derepressed for nitrogenase in the presence of NH 4 + , and displayed rates of NH 4 + uptake in proportion to their glutamine synthetase activity. Ammonium uptake and glutamine synthetase activity were also restored in R. capsulata G29 exconjugants which had received the plasmid pPS25, containing the R. capsulata glutamine synthetase structural gene. These data suggest that NH 4 + transport is tightly coupled to assimilation.Abbreviations used CHES cyclohexylaminoethanesulfonic acid - GS glutamine synthetase - SDS sodium dodecylsulfate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号