首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ANOMALOUS CONTRACTION OF INVERTEBRATE STRIATED MUSCLE   总被引:1,自引:1,他引:0  
The phenomenon of A band shortening or contraction has been investigated in glycerinated myofibrils of Pecten irradians, Homarus americanus, Cambarus virilis, and Limulus polyphemus through the techniques of ultraviolet microbeam inactivation and polarization microscopy. With the former method, it has been shown that these muscles, even though exhibiting the shortening effect, contract in a manner consistent with only the sliding filament model. Intrinsic birefringence studies have indicated no significant changes in mass distribution or orientation within the shortened A bands. Except in the case of Limulus muscle, the shortening effect was seen only in contraction under tension. The magnitude of this anomalous phenomenon was dependent upon glycerination time and has been duplicated in rabbit psoas muscle through brief trypsin treatment. A band shortening could not be observed in glutaraldehyde-fixed muscle or in myofibrils glycerinated for only short periods. It has been concluded that the phenomenon of A band contraction is an artifact induced by the glycerination procedure, possibly through weakening of the sarcomere structure. However, the fact that the A band shortens under tension rather than lengthens poses an interesting paradox.  相似文献   

2.
INTRINSIC BIREFRINGENCE OF GLYCERINATED MYOFIBRILS   总被引:5,自引:2,他引:3       下载免费PDF全文
Patterns of intrinsic birefringence were revealed in formalin-fixed, glycerinated myofibrils from rabbit striated muscle, by perfusing them with solvents of refractive index near to that of protein, about 1.570. The patterns differ substantially from those obtained in physiological salt solutions, due to the elimination of edge- and form birefringence. Analysis of myofibrils at various stages of shortening has produced results fully consistent with the sliding filament theory of contraction. On a weight basis, the intrinsic birefringence of thick-filament protein is about 2.4 times that of thin-filament protein. Nonadditivity of thick- and thin-filament birefringence in the overlap regions of A bands may indicate an alteration of macromolecular structure due to interaction between the two types of filaments.  相似文献   

3.
By using glycerinated single fibers of crab muscle (Sesarma haematocheir) which has long sarcomeres, the birefringence of the I band, H band and the overlapping region between thin and thick filaments was measured separately, under various environmental conditions. At the resting length, the birefringence of the fiber was decreased by the addition of Ca2+ in the absence of ATP, by about 0.35%. This birefringence decrease was found to take place in the overlapping region. The decrease corresponded to about 2% of the birefringence of thin filaments in this region. The birefringence of the fiber was increased by the addition of ATP in the absence of Ca2+, by about 6%. This birefringence increase also took place mostly in the overlapping region. The increase of birefringence by pyrophosphate was about half of that by ATP. The birefringence of the fiber was decreased by the increase of the ionic strength from 0.12 to 0.20. The origin of the observed changes of birefringence is discussed.  相似文献   

4.
Muscle contraction is generally thought to involve changes in the orientation of myosin crossbridges during their ATP-driven cyclical interaction with actin. We have investigated crossbridge orientation in equilibrium states of the crossbridge cycle in demembranated fibres of frog and rabbit muscle, using a novel combination of techniques: birefringence and X-ray diffraction. Muscle birefringence is sensitive to both crossbridge orientation and the transverse spacing of the contractile filament lattice. The latter was determined from the equatorial X-ray diffraction pattern, allowing accurate characterization of the orientation component of birefringence changes. We found that this component decreased when relaxed muscle fibres were put into rigor at rest length, and when either the ionic strength or temperature of relaxed fibres was lowered. In each case the birefringence decrease was accompanied by an increase in the intensity of the (1,1) equatorial X-ray reflection relative to that of the (1,0) reflection. When fibres that had been stretched largely to eliminate overlap between actin- and myosin-containing filaments were put into rigor, there was no change in the orientation component of the birefringence. When isolated myosin subfragment-1 was bound to these rigor fibres, the orientation component of the birefringence increased. The birefringence changes at rest length are likely to be due to changes in the orientation of myosin crossbridges, and in particular of the globular head region of the myosin molecules. In relaxed fibres from rabbit muscle, at 100 mM ionic strength, 15 degrees C, the long axis of the heads appears to be relatively well aligned with the filament axis. When fibres are put into rigor, or the temperature or ionic strength is lowered, the degree of alignment decreases and there is a transfer of crossbridge mass towards the actin-containing filaments.  相似文献   

5.
Cross-striation pattern and sarcomere length in isolated myofibrils (both glycerinated and fresh) as well as isometric tension of glycerinated fibers of rabbit m. psoas are unaffected by an evaluation in ionic strength of CaCl2 up to 0.2 in the absence of ATP. An addition of MgATP (1 to 3mM) to the Ca2+ media induces the changes which have been shown to be characteristic of overrelaxation [1, 2]: A band shortening occurs followed by a complete plastification of the fibres. A tentative mechanism of the process is discussed in terms of spontaneous rearrangement of calcium myosinate packing in thick filaments that follows disrupting of rigor crossbridges with thin filaments under the action of ATP. Released calcium myosinate heads fail to form "active" bridges with actin; thick filaments undergo a conformational change resulted in their shattening due to increase in the equilibrium region of LMM tail overlap. The effects do not depend on ionic strength only: on replacing CaCl2 by KCl at equal ionic strength 0.2, an addition of ATP induces normal contraction instead of overrelaxation. A possibility is discussed that in a living muscle overrelaxation could provide a siding to prevent damage in case of emergency.  相似文献   

6.
Induction of alkali labile links in cellular DNA by camptothecin   总被引:2,自引:0,他引:2  
The initial shortening velocity of collagen and glycerinated rabbit psoas fibers were studied as a function of applied force while immersed in media where an isothermal phase transition occurred. Quantitatively similar results were found for both kinds of fibers. In the two-phase region the Hill equation is obeyed with the same constants that have been found for stimulated muscle. It is suggested that a similar underlying mechanism governs contractility in these systems.  相似文献   

7.
Accounts of similarities between the thick filament lattice of striated muscle and smectic liquid-crystalline structures have focused upon an equilibrium between electrostatic (repulsive) and van der Waal's (attractive) forces. In living, intact muscle the fiber volume constitutes an additional important parameter which influences the amount of interaxial separation between the filaments. This is demonstrable by comparison of the lattice behavior of living fibers with that of fibers from which the sarcolemma has either been removed or made leaky by glycerination. These comparisons were made mainly by low-angle X-ray diffraction under conditions of changes in sarcomere length, ionic strength or osmolarity, and pH. Single fibers with the sarcolemma removed and glycerinated muscle have lattices which behave in accord with equilibrium liquid-crystalline systems in which the thick filament spacing is determined by the balance between electrostatic and van der Waal's forces. Conversely, osmotic and shortening studies demonstrate that the living, intact muscle has a lattice which behaves in accord with the so-called non-equilibrium (volume-constrained) liquid-crystalline condition in which the interaxial separation between the thick filaments is solely due to the amount of volume available as determined by the Donnan steady-state across the sarcolemma.  相似文献   

8.
The effects of 2,3-butanedione 2-monoxime (BDM) on mechanical responses of glycerinated fibers and the ATPase activity of heavy meromyosin (HMM) and myofibrils have been studied using rabbit skeletal muscle. The mechanical responses and the ATPase activity were measured in similar conditions (ionic strength 0.06-0.2 M, 0.4-4 mM MgATP, 0-20 mM BDM, 2-20 degrees C and pH 7.0). BDM reversibly reduced the isometric tension, shortening speed, and instantaneous stiffness of the fibers. BDM also inhibited myofibrillar and HMM ATPase activities. The inhibitory effect on the relative ATPase activity of HMM was not influenced by the addition of actin or troponin-tropomyosin-actin. High temperature and low ionic strength weakened BDM's suppression of contraction of the fibers and the ATPase activity of contracting myofibrils, but not of the HMM, acto-HMM and relaxed myofibrillar ATPase activity. The size of the initial phosphate burst at 20 degrees C was independent of the concentration of BDM. These results suggest that the suppression of contraction of muscle fibers is due mainly to direct action of BDM on the myosin molecules.  相似文献   

9.
Passive stretch, isometric contraction, and shortening were studied in electron micrographs of striated, non-glycerinated frog muscle fibers. The artifacts due to the different steps of preparation were evaluated by comparing sarcomere length and fiber diameter before, during, and after fixation and after sectioning. Tension and length were recorded in the resting and contracted fiber before and during fixation. The I filaments could be traced to enter the A band between the A filaments on both sides of the I band, creating a zone of overlap which decreased linearly with stretch and increased with shortening. This is consistent with a sliding filament model. The decrease in the length of the A and I filaments during isometric contraction and the finding that fibers stretched to a sarcomere length of 3.7 µ still developed 30 per cent of the maximum tetanic tension could not be explained in terms of the sliding filament model. Shortening of the sarcomeres near the myotendinous junctions which still have overlap could account for only one-sixth of this tension, indicating that even those sarcomeres stretched to such a degree that there is a gap between A and I filaments are activated during isometric contraction (increase in stiffness). Shortening, too, was associated with changes in filament length. The diameter of A filaments remained unaltered with stretch and with isometric contraction. Shortening of 50 per cent was associated with a 13 per cent increase in A filament diameter. The area occupied by the fibrils and by the interfibrillar space increased with shortening, indicating a 20 per cent reduction in the volume of the fibrils when shortening amounted to 40 per cent.  相似文献   

10.
Changes in thick filament length in Limulus striated muscle   总被引:4,自引:4,他引:0       下载免费PDF全文
Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.  相似文献   

11.
The number of sarcomeres in a given muscle of the mite Tarsonemus randsi was constant in both larval and adult stages, with the exception of the two medial dorsal metapodosomal muscles in males. These muscles have three sarcomeres in larvae and one sarcomere in adults. This change in sarcomere number within a muscle was observed in the living animal by polarized light microscopy using parthenogenetically derived male larvae. Initially the transforming muscles shortened slowly (hours) and the appearance of the sarcomeres was comparable to that seen during normal contraction. With continued shortening there was apposition of adjacent A bands and disappearance of clearly visible Z lines, but no loss of birefringence. Over the next 12 hr there was further shortening of the muscle and loss of birefringence. This was apparent as shortening of the three apposed A regions to the length of a single A band with a small increase in muscle width and no increase in the peak retardation of the birefringent region. The observations are discussed in terms of differential loss of the A filaments of the two terminal sarcomeres.  相似文献   

12.
Investigation of the ionic behavior of glycerinated muscle fibers showed that the residual structures of this biologic cellular material, lacking functional membranes, are able to discriminate between alkaline ions. The characteristics of the ionic selectivity of the glycerinated fibers change with their functional state and with the presence in the medium of certain nonionic substances. Among the more important features of ionic distribution between the membrane-free fibers and the medium are the following: (1) There is evident adsorption of potassium on the fibers, in the absence of ATP. (2) This adsorption increases in contraction and decreases in relaxation. (3) At high ionic concentrations, in contrast to what occurs at low potassium concentrations, the glycerinated muscle prefers sodium to potassium, but even under these conditions both ions are accumulated in the fibers to far greater levels than in the medium. This strongly suggests a Donnan ionic equilibrium developing parallel to the adsorption process. (4) Nonionic substances of the general anesthetic group markedly alter the ionic selectivity of the glycerinated fibers, probably by their action on the water's physical state. A mechanism is proposed for the observed ionic adsorption specific of the muscle-a mechanism in which actin-myosin coupling plays the cardinal adsorption role. In the general interpretation of the data a synthetic concept is advanced according to which an entire set of processes and factors concurs with the distribution of ions between the muscle and the medium.  相似文献   

13.
Native thick filaments isolated from freshly prepared rabbit psoas muscle were found to be resistant to pressure-induced dissociation. With increasing pressure application and release, a bimodal distribution of filament lengths was observed. The shorter filament length is associated with filament breakage at the center of the bare zone, while the longer length is associated with relatively intact filaments. Intact filaments and filament halves decrease in length by no more than 20% after exposure to and release of 14,000 psi. Bimodal distributions were not observed in equivalent experiments performed on filaments isolated from muscle glycerinated and stored at -20 degrees C for 6 months. Instead, filament dissociation proceeds linearly as a function of increasing pressure. Filaments prepared from muscle glycerinated and stored for 2 and 4 months exhibited pressure-induced behavior intermediate between the filaments prepared from fresh muscle and filaments prepared from muscle stored for 6 months. Since there appears to be no difference in the protein profiles of the various muscle samples, it is possible that stabilization of the native thick filament against hydrostatic pressure arises from trapped ions that are leached out over time.  相似文献   

14.
Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development.  相似文献   

15.
Two-dimensional maps of birefringence in sarcomers of a single fiber of rabbit m.psoas were obtained by an automated interference microscope developed at our laboratory. The changes in birefringence of muscle fibers reflect the movement of myosin cross-bridges. The orientation of cross-bridges was modified by varying the pH (pH 7.0, 6.0, 8.0) and ionic strength (mu = 0.115, 0.085, 0.235) of the bathing rigor solution. The maximum value of total birefringence in the rigor state was observed at neutral pH. Total birefringence markedly decreased (by 40%) as pH was changed from 7.0 to both 8.0 and 6.0. No significant changes in light phase shifts were found at a 1.5 reduction of ionic strength in the rigor solution. The calculated birefringence values were 45% higher in rigor solutions of a high (mu = 0.235) ionic strength. The results observed are discussed in terms of changes in the orientation of cross-bridges due to the movement of the alpha-helical subfragment-2 away from the filament shaft (pH 8) or coming closer to it (mu = 0.235). The available data do not allow one to explain the results obtained at pH 6.0.  相似文献   

16.
Measurement of the state of optical polarization of light diffracted from single, skinned and intact fibers of anterior tibialis muscle from Rana pipiens revealed a dependence upon rigor, activation, and sarcomere length (SL) change. Changes in total birefringence, delta nT, and differential field ratio value, rT, were determined. In a relaxed, skinned fiber the total birefringence value, delta nT, decreases as sarcomere length is increased from 2.1 microns to approximately 2.8-3.0 microns. From there it increases significantly to a value of approximately 1.8 x 10(-3) at a sarcomere length of 3.6 microns. The differential field ratio, rT, also shows a biphasic response to increasing sarcomere length, first exhibiting a rapid decrease over shorter SL and leveling out after the SL is beyond 3.0 microns. In comparison, relaxed intact fibers change substantially less upon sarcomere length change, showing little change in birefringence and a small bi-phasic change in rT. Skinned fibers were activated using a solution that has the same ionic strength as the relaxing solution and allows repeatable, and sustained activation. A decrease in both delta nT and rT was observed upon fiber activation. The decrease in delta nT and rT was slightly larger at shorter sarcomere lengths than at longer lengths. Relaxed fibers placed in rigor showed changes in delta nT and rT similar to those observed in activated fibers. These results are consistent with the hypothesis that, after activation, a significant portion of the thick filament cross-bridges rotate towards the actin filament resulting in redistribution of the interfilament mass content. They are also consistent with an average orientation of crossbridges in the overlap region different from that in the nonoverlap region.  相似文献   

17.
To see whether the SII portion of the cross-bridge in rigor fibers is longitudinally compliant, we chemically cross-linked with dimethyl suberimidate the entire rod portion (including the SII portion) of myosin onto the surface of thick filaments in glycerinated rabbit psoas fibers, and studied the effect of the SII fixation on the stiffness of the rigor fibers. The cross-linking of fiber segments with full filament overlap increased the rigor stiffness by approximately 25%. Almost the same absolute amount of the stiffness increase was also observed in rigor fibers with half- or no filament overlap after the cross-linking, and a similar but somewhat larger increment of stiffness was observed in fiber segments cross-linked in relaxing solution. These results indicate that the stiffness increase is not produced by the fixation of the SII portion onto the thick filament surface, but is caused instead by the cross-linking of some parallel elastic elements in muscle, and therefore indicate that the SII portion of the cross-bridge is hardly longitudinally compliant in rigor fibers.  相似文献   

18.
By the method of polarized ultraviolet fluorescence microscopy, effects of ATP, Ca2+, changes in pH and ionic strength of washing solution of the structural state of thick filaments in both actin-free muscle fibers of rabbit and anisotropic discs (A-discs) of glycerinated fibers of crab were studied. The dependence of tryptophan fluorescence anisotropy of thin filaments upon physico-chemical parameters (compounds) of washing solution has been found. The structural state of thick filaments was suggested to be influenced by ATP, Ca2+, changes in pH and ionic strength of washing solution.  相似文献   

19.
The formation of rigor complexes between the thick and thin filaments of glycerinated rabbit psoas muscle fibers causes the fibers to bind more calcium at any given level of free calcium. I studied the maximum amount of calcium bound as a function of filament overlap under rigor conditions. Fibers stretched to zero filament overlap (sarcomere length greater than 3.8 micron) bound exactly 75% as much calcium as fibers with maximum overlap. Between these extremes a linear relationship was found between maximum bound calcium and the length of the overlap zone. The results support the hypothesis that in the intact filament lattice one of the four calcium-binding sites of troponin depends for its existence on attachment between myosin and actin. In addition, the linear relation between maximum bound calcium and filament overlap is consistent with the assumption that the cooperative effect of rigor complex formation on calcium binding is limited to the binding site in the immediate vicinity of the rigor complex.  相似文献   

20.
The oxygen exchange during ATP hydrolysis by glycerinated muscle fibers, myofibrils, and synthetic actomyosin filaments was studied from the distribution of the [18O]Pi species produced by the hydrolysis of [gamma-18O]ATP. The products were mixtures of two species, one with a low extent of oxygen exchange and the other with a high extent. The low and high extents of oxygen exchange in these two Pi species were the same as those of the acto-S-1 ATPase reaction through the routes with and without the dissociation of actomyosin, respectively (Yasui, M., Ohe, M., Kajita, A., Arata, T., & Inoue, A. [1988] J. Biochem. 104, 550-559). During isometric contraction of glycerinated muscle fibers at 20 degrees C, the fraction of ATP hydrolysis with low extent of oxygen exchange was 0.83 and 0.70, respectively, in 0 and 120 mM KCl. In myofibrils, the fraction of ATP hydrolysis with a low extent of oxygen exchange was 0.72-0.88 in 0-120 mM KCl at 20 degrees C. Therefore, in glycerinated muscle fibers and myofibrils ATP seems to be mainly hydrolyzed through a route without the dissociation of actomyosin, especially at low ionic strength and at room temperature when the tension development is high. ATP hydrolysis through this route may be coupled with muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号