首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
The influence of salinity on the activity of nitrate reductase (NR, EC 1.6.6.1) and the level of the molybdenum cofactor (MoCo) as affected by the source and concentration of nitrogen was studied in annual ryegrass ( Lolium multiflorum cv. Westerwoldicum). Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS m−1, containing nitrogen (0.5 or 4.5 m M ) in the form of NH4NO3 or NaNO3 Salinity-treated (11.2 dS m−1) plants produced less biomass and more organic nitrogen while accumulating more NO3 than control plants. Increased nitrogen concentration in the irrigation solutions enhanced biomass and organic nitrogen production as well as NO3 accumulation irrespective of the electrical conductivity. Salinity inhibited shoot growth and increased shoot NR activity of plants receiving 4.5 m M NH4NO3 or NaNO3. Similar effects were observed in roots of plants grown in 4.5 m M NaNO3. Nitrate added to a complementation medium containing ryegrass MoCo and the NR apoprotein of Neurospora crassa mutant nit-1 stimulated the activity of the reconstituted NR (NADPH-nitrate reductase, EC 1.6.6.3). Increased salinity and nitrogen in the nutrient solutions caused an increase of MoCo content in roots and shoots. Similar results were observed for NR activity in the shoots. The increase of MoCo in response to salinity was more pronounced than that of NR, especially in the roots. We conclude that the pool size of MoCo in ryegrass is not constant, but varies in response to nutritional and environmental factors.  相似文献   

2.
The effects of abscisic acid (ABA) and methyl jasmonate (MJ) on growth of rice seedlings were compared. The lowest tested concentration of ABA and MJ that inhibited seedling growth was found to be 4.5 and 0.9 µM, respectively. Growth inhibition by ABA is reversible, whereas that by MJ is irreversible. GA3 was found to be more effective in reversing inhibition of shoot growth by ABA than by MJ. KCl partially relieved MJ-inhibited, but not ABA-inhibited, growth of rice seedlings. The beneficial effect of K+ on growth of rice seedlings in MJ medium could not be replaced by Li+, Na+ or Cs+. MJ treatment caused a marked release of K+ into the medium. In order to understand whether cell wall-bound peroxidase activity was inversely related to rice seedling growth, effects of ABA and MJ on cell wall-bound peroxidase activity were also examined. Results indicated that both ABA and MJ increased cell wall-bound peroxidase activity in roots and shoots of rice seedlings. Although MJ (4.5 µM) was less effective in inhibiting root growth than ABA (9 µM), MJ was found to increase more cell wall-bound peroxidase activity in roots than ABA.  相似文献   

3.
Wheat seedlings (Triticum aestivum L. cv. Timmo) were treatedwith up to 20% (w/v) polyethylene glycol (PEG, mol. wt. 3350)in the nutrient medium for 6 d. Shoot growth and nitrate transportand metabolism were substantially affected by PEG treatment.At 20% PEG (corresponding to a water potential of approximately–1.6 MPa), which caused plants to wilt within 1–2h, activity of nitrate reductase (NR) declined with a half-lifeof approximately 5 h in both roots and shoots. The decline wasconsiderably slower at lower PEG concentrations. Significantincreases in levels of abscisic acid (ABA) only occurred inshoots. Application of ABA to intact plants or excised shootsdid not induce or accelerate decline in shoot NR activity. Therapid decline in NR activity during wilting appears unrelatedto both nitrate flux and ABA. At lower PEG concentrations andin the long-term, however, NR activity corroborates rates ofboth transport and growth-related utilization of nitrate. Therole of ABA in this context appears to be indirect through itsaction on stomatal function which reduces water flux and gasexchange. Key words: Stress, nitrate reductase, abscisic acid (ABA)  相似文献   

4.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

5.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1083-1091
Treatment of potato plants grown in nutrient solution with 3.8µM ABA resulted in reduced soluble protein in roots andin leaves at 24 h, but not in stems. This treatment reducedin vivo nitrate reductase activity in all organs for about 48h with the most pronounced reduction occurring in the roots.Excised root and leaf segments from plants treated with ABAfor 24, 48 and 72 h absorbed significantly more 14C leucine,compared to the control but the percent incorporation into proteinwas not altered in roots. In response to ABA total free amino nitrogen in leaves was lowerat 5 and 72 h and in stems at 72 h. Amino nitrogen content ofroots was enhanced by ABA at 5, 24 and 72 h due to generallyhigher levels of aspartate, serine, glutamate, proline and ammonia.There was no consistent relationship between ABA suppressionof nitrate reductase activity and ammonia or specific aminoacid (except proline) levels in leaves and stems. The increasedfree amino nitrogen levels in response to the hormone may bethe result of impaired NO3– reduction rather than thecause. The results of protein synthesis studies and solubleprotein content suggest that ABA inhibition of nitrate reductaseis not due to general inhibition of protein synthesis and mayinvolve specific inhibition of nitrate reductase protein synthesis. 1 Contribution No. 684, Department of Plant Science, Universityof Manitoba.  相似文献   

6.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1167-1174
Abscisic acid (ABA) at 3.8 µM suppressed both in vivoand in vitro nitrate reductase activity in roots, stems andleaves of potato plants grown in solution culture. Suppressionwas maximal between 24 and 48 h, followed by recovery of activityat 72 h in roots and leaves and at 96 h in stems. Removal from ABA after 24 h resulted in complete recovery ofnitrate reductase activity in roots by 24 h and partial recoveryin leaves. ABA treatment enhanced nitrate accumulation in roots,decreased that of leaves, but had no effect on stem nitratecontent. ABA enhanced decay of the enzyme following nitrate removal;by 7 h activity in roots was 22.5% of the initial value comparedto 55% in the control. ABA showed a less drastic effect on lossof activity in leaves and stems. These results indicate thatABA suppression of nitrate reductase activity is not dependenton nitrate uptake, and although it reduced leaf nitrate contentthere was no clear relationship between tissue nitrate levelsand the ABA response. (Received September 13, 1984; Accepted July 1, 1985)  相似文献   

7.
低pH对水稻黄化叶片硝酸还原酶活性暗诱导的调节   总被引:4,自引:0,他引:4  
在低pH条件下,水稻离体黄化叶片的硝酸还原酶(NR)活性能在暗中诱导产生,其诱导过程约有2h的滞后期,亚胺环已酮(CHI,5ppm)和Na_2WO_4(25 mmol/L)能完全抑制这种诱导作用。在最适pH 3.0时,H~3标记氨基酸掺入NR的量比pH 7.0时约高2倍,表明酶活性的产生与酶蛋白的重新合成有关。 当低pH暗诱导时,BA(5ppm)和ABA(15ppm)能使酶活性分别提高约30%和80%,但它们都不能取代低pH在NR活性暗诱导中的作用。当存在1ppm CHI的时候,BA仍促进NR活性,而ABA则加强CHI对酶活性的抑制作用,这提示BA与ABA在低pH暗诱导条件下促进NR活性的机制是不同的。在pH 7.0的光诱导条件下,ABA对NR活性起抑制作用。  相似文献   

8.
Incubation of 5-d-old maize seedlings in the half-strength Hoagland's nutrient solution containing 10 mM KNO3 with FeCl3 or FeSO4 (0.5 or 2.0 mM) caused a significant increase in nitrate reductase (NR) activity and slightly increased total protein content in root, shoot and scutellum. In case of root, NADPH:NR activity was inhibited contrary to the NADH:NR activity. In spite of NR activity, nitrate uptake was inhibited from 13 to 37 % by the iron. The results presented demonstrate an isoform specific, organ specific, and to some extent salt specific responses of NR to iron.  相似文献   

9.
Assimilatory nitrate reductase (NR) was solubilized by acetonetreatment from Plectonema boryanum and was purified 7,700-foldby heat treatment, ammonium sulfate fractionation and chromatographyon DEAE-Sephacel and Sephadex G-150. Purified NR had a specificactivity of 85 µmol NO2 formed min–1 mg–1protein. The enzyme retained both ferredoxin (Fd)- and methylviologen (MV)-linked NR activities throughout the purificationprocedure. Molecular weight was 80,000. The pH optimum was 10.5in the MV-assay and 8.5 when assayed with enzymatically reducedFd as the electron donor. Apparent Km values for nitrate andMV were 700 µM and 2,500µM in the MVassay and 55µM and 75 µM for nitrate and Fd in the Fd-assay.The enzyme was inhibited by thiol reagents and metal-chelatingreagents. (Received October 1, 1982; Accepted March 8, 1983)  相似文献   

10.
Heat treatment (38°C) of young grape plants (Vitis vinifera L., cv. Jingxiu) or leaf spraying with 100 µM salicylic acid (SA) increased leaf thermotolerance. Both treatments led to an increase in ABA content and a decrease in lipoxygenase (LOX) activity. ABA content showed a drastic rise by one hour after treatments and then sharply declined while LOX activity continuously decreased. In the course of heat treatment of grape plants, endogenous SA level and phenylalanine ammonia-lyase activity rapidly increased during the first hour, then declined. These results showed that endogenous SA and ABA can be involved in grape plant response to heat treatment resulted in improved thermotolerance.From Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 578–583.Original English Text Copyright © 2005 by Wang, Huang, Liu, Zhan.The text was submitted by the authors in English.  相似文献   

11.
Nitrate reductase activity in the first true leaves of canola(Brassica napus L.) seedlings grown in one-quarter strengthHoagland's solution from seeds pretreated with triadimenol (0.3or 30 g (a.i.) kg–1 of seed) was higher than controlsduring the growth period of 15 to 25 d after planting. Triadimenolalso increased chlorophyll levels, the increase being more pronouncedat its lower concentration. The treatment also increased theweight and nitrate content of the leaves. When seedlings weregrown in nutrient solution containing 1 to 20 mM nitrate, theincrease in nitrate reductase activity by triadimenol was higherat lower rather than at higher nitrate concentrations. The nitratelevels and Kjeldahl nitrogen in the triadimenol-treated leaveswas higher than the controls at concentrations of added nitrateabove 2 mM. Addition of nitrate to plants grown in ammonium,increased nitrate reductase activity more in plants grown fromtriadimenol-treated seeds than controls. However, addition of10µM triadimenol for 24 h to ammonium-grown plants hadlittle effect on enzyme activity, both in the absence as wellas the presence of nitrate. This study demonstrates that triadimenolincreases nitrate reductase activity and nitrate accumulationin the leaves and at least part of the increased enzyme activityis independent of nitrate accumulation. Key words: Triazoles, nitrate content, nitrate reductase activity  相似文献   

12.
Supply of 100 μM spermidine (Spd) in the nutrient solution containing 10 mM nitrate as the sole nitrogen source, increased growth of roots and shoots, total nitrogen content andin vivo orin vitro nitrate reductase (NR) activity of leaves of 10-d oldLeucaena leucocephala seedlings. Spd and the cytokinins benzyladenine or kinetin also increased growth, total nitrogen andin vivo NR activity of isolated cotyledons. The synergistic effects of nitrate, kinetin and Spd in increasing NR activity, indicate that the Spd acted at different level than the nitrate or cytokinin.  相似文献   

13.
The relation of the in vivo nitrate reductase (NR) activityto growth period was studied in the nodules and the leaves ofthe summer moong (Vigna radiata). The maximum NR activity wasobserved 31 days after sowing (DAS) in the leaves and 28 DASin the case of the nodules. In a pot experiment, the effectof the various nitrogen concentrations, namely 0, 3, 6, 9 and12 mg kg–1 was studied on NR activity at three growthstages. The maximum NR activity was observed at 6 mg kg–1N during the pre-flowering stage (26 DAS). Though the noduleshave higher NR activity, its expression was limited by substrateavailability. The NR activity in the leaf could be used as anindex of NR activity in the nodules. Nitrate reductase, nitrogen, nitrate, moong, Vigna radiata  相似文献   

14.
A barley (Hordeum vulgare L.) mutant, nar1a (formerly Az12), deficient in NADH nitrate reductase activity is, nevertheless, capable of growth with nitrate as the sole nitrogen source. In an attempt to identify the mechanism(s) of nitrate reduction in the mutant, nitrate reductase from nar1a was characterized to determine whether the residual activity is due to a leaky mutation or to the presence of a second nitrate reductase. The results obtained indicate that the nitrate reductase in nar1a differs from the wild-type enzyme in several important aspects. The pH optima for both the NADH and the NADPH nitrate reductase activities from nar1a were approximately pH 7.7, which is slightly greater than the pH 7.5 optimum for the NADH activity and considerably greater than the pH 6.0 to 6.5 optimum for the NADPH activity of the wild-type enzyme. The nitrate reductase from nar1a exhibits greater NADPH than NADH activity and has apparent Km values for nitrate and NADH that are approximately 10 times greater than those of the wild-type enzyme. The nar1a nitrate reductase has apparent Km values of 170 micromolar for NADPH and 110 micromolar for NADH. NADPH, but not NADH, inhibited the enzyme at concentrations greater than 50 micromolar.  相似文献   

15.
In order to compare the effects of excess pedospheric and atmospheric nitrogen supply on nitrate reductase activity (NR. EC 1.6.6.1) excised spruce branches were exposed to nitrate solutions or were fumigated with NO2. Immersion of spruce branches in 6 mM nitrate caused an increase in NR activity by a factor of 14 or 19 in current-year and in one-year-old needles, respectively, as compared to controls incubated in tap water. Exposure to 65 nl I?1 NO2 increased NR activity by a factor of 1.5 in current-year needles and by a factor of 2.5 in one-year-old needles as compared to non-fumigated controls. Addition of cycloheximide (0.17 μM) or puromycin (200 μM) to the incubation solution prevented the induction of NR activity from both nitrate and NO2 exposure. This finding indicates that induction of NR activity by both atmospheric NO2 or increased nitrate supply of the needles is both caused by de-novo synthesis of NR protein. The increase in NR activity in needles of branches still attached to the tree as a consequence of exposure to 65 nl I?1 NO2 was found to be a transient phenomenon. The increase persisted for several days only and was no longer observed after one week of sustained NO2 exposure. An interruption of phloem transport by girdling, applied subsequent to the induction of NR activity by atmospheric NO2, prevented the decrease in NR activity. Apparently, export out of the exposed needles and phloem transport within the stem are involved in the regulation of NR activity upon NO2 exposure.  相似文献   

16.
硝酸盐对硝酸还原酶活性的诱导及硝酸还原酶基因的克隆   总被引:16,自引:0,他引:16  
硝酸盐在植物体内的积累过多已成为影响蔬菜品质并影响人类健康的重要因素。硝酸还原酶(NR)是硝酸盐代谢中的关键酶,提高其活性有利于硝酸盐的降解。为了解植物不同组织中NR的活性,用活体测定法检测了经50mmol/L的KNO3诱导不同时间后的油菜、豌豆和番茄幼苗根茎叶中NR活性,同时为了明确外源诱导剂浓度与植物体内NR活性的关系,检测了经不同浓度KNO3诱导2h后的矮脚黄、抗热605、小白菜和番茄叶片中的NRA。结果表明,不同植物组织NR活性有很大差异,叶中NR活性较高,根其次,茎最低;不同植物的NR活性随诱导时间呈不同的变化趋势,相同植物不同组织的NR活性变化趋势相似;不同植物叶片NRA为最高时KNO3浓度不同。用30mmol/L的KNO3诱导番茄苗2h后,从番茄根和叶中提取总RNA,用RT-PCR方法获得NR cDNA,全长2736bp,编码911个氨基酸。为进一步利用该基因提高植物对硝酸盐的降解能力打下基础。  相似文献   

17.
硝酸盐对球形棕囊藻生长和硝酸还原酶活性的影响   总被引:1,自引:0,他引:1  
以我国南海海域分离的赤潮原因种——球形棕囊藻(Phaeocystis globosa)为材料, 研究了不同硝酸盐浓度下藻细胞生长及硝酸还原酶活性的变化。当培养基中不含硝酸盐时, 藻细胞内硝酸还原酶的活性保持在非常低的水平, 藻细胞的生长受到限制, 不能形成正常的生长曲线: 当培养基中硝酸盐浓度为3.62 mmol.L-1时, 藻细胞的硝酸还原酶活性和比生长速率达到最大。在含有硝酸盐的培养基中, 接种培养后第9天藻细胞硝酸还原酶活性达到最大值, 并且在4种不同硝酸盐浓度下, 藻细胞硝酸还原酶活性的差异性达到极显著水平(P<0.01)。在接种培养第16天藻细胞密度达到最大值, 并且4种不同硝酸盐浓度培养的藻细胞密度之间的差异性也达到极显著水平(P<0.01)。实验结果表明, 在培养基中添加不同浓度的硝酸盐, 对球形棕囊藻细胞硝酸还原酶的活性和藻细胞的生长有极显著的影响, 含有较高硝酸盐的富营养化海域有利于球形棕囊藻细胞的持续生长。  相似文献   

18.
The effects of high (15 mM) and low (0.75 mM) solution nitratelevels on nitrogen metabolism in three genotypes (IL 7A, IL13 and IL 21) of winged beans [Psophocarpus tetragonolobus (L.)DC.] and one genotype (Williams) of soya bean [Glycine max (L.)Merrill] were investigated. Plants were grown for 42 days ina greenhouse in solution culture prior to sampling. The 15 mM nitrate treatment resulted in greater growth of allplant parts except roots. Growth of soya beans was more responsiveto nitrate level than was growth of winged beans. The high nitratelevel inhibited nodulation in all plants. The IL 13 and IL 21winged bean genotypes had similar nitrogenase activity (acetylenereduction per plant) as the soya bean and IL 7A winged beangenotype had lower activity. However, the IL 13 winged beangenotype had higher nitrogenase activity (acetylene reductionper unit nodule mass) than the other three genotypes which allhad similar activity. The 15 mM solution nitrate level stimulatedleaf and root nitrate reductase (NR) activity for all plants.All winged bean genotypes had higher leaf NR activity and higherpercentage reduced- and nitrate-nitrogen contents of leavesand stems compared with soya beans. However, total protein (reducednitrogen) was greater in soya beans when sampled indicatingthat more nitrate had been metabolized by soya beans than bywinged beans during the 42-day growth period. Psophocarpus tetragonolobus (L.) DC., winged bean, Glycine max (L.) Merrill, Soya bean, nitrate reductase, nitrogen fixation, nitrogenase activity, nodulation  相似文献   

19.
Nitrate is a major nitrogen (N) source for most crops. Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels. Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency. The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots. Wheat seedlings grown in nutrient solution containing 2 mmol/L nitrate as the only nitrogen source for 2weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h. Treated wheat plants were then divided into two groups. One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L ^15N-labeled nitrate. The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate. Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction. When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced. These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media. Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.  相似文献   

20.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号