首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Comparison of rat blood preparation methods for acetaldehyde assay   总被引:1,自引:0,他引:1  
A comparison is made of four previously described methods for the preparation of blood for acetaldehyde (AcH) assay in the rat. The spontaneous formation of AcH which occurs during the treatment of blood containing ethanol and the recovery of known amounts of AcH added to the blood were studied. The methods using sodium nitrite-sulfosalicylic acid or perchloric acid (PCA) in saline gave low levels of spontaneous formation (1 to 2 microM AcH for 48 mM ethanol). In the recovery studies it was seen that semicarbazide does not allow displacement of all the AcH; treatment of the blood with the reactant sodium nitrite-sulfosalycilic acid and use of the hemolysis method gave levels of recovery lower than 50%. Only treatment of the blood with perchloric acid in NaCl allowed all the AcH added to the blood to be recovered. In vivo, PCA in saline releases the AcH which was seen to remain bound in the red blood cells with the semicarbazide method. So the recommended procedure for accurate assay of blood AcH in the rat is cold deproteinization in PCA/saline before head-space gas chromatography. The levels of in vivo blood AcH (4.1 +/- 0.33 microM) obtained in the rat using this method for a blood alcohol concentration of 52 mM are lower than those previously described in the literature.  相似文献   

2.
The role of acetaldehyde (AcH) in the ethanol-induced shift toward reduction of the cytosolic and mitochondrial free NAD+/free NADH ratios and its effect on the phosphorylation potential was investigated in livers of fed, intact rats given ethanol (1 g/kg ip). Calcium cyanamide, an inhibitor of mitochondrial aldehyde dehydrogenase, was administered to block predominantly intramitochondrial NADH production from AcH oxidation. Compared with ethanol alone, cyanamide almost totally reversed the elevation of the β-OH-butyrate/acetoacetate ratio but only slightly reduced the lactate/ pyruvate ratio, which was calculated to be in near equilibrium with the hepatic ethanol/ AcH ratio after cyanamide. Ethanol or cyanamide alone had no effect on ATP, ADP, or Pi, but together they significantly decreased the ATPADP · Pi ratio by increasing both ADP and Pi levels. No association between changes in the phosphorylation potential and the redox states was, however, observed. An ethanol-induced increase in AMP was abolished by cyanamide. The results demonstrate that the effect of ethanol on the mitochondrial redox state requires active AcH oxidation and suggest that moderate AcH accumulation likely to occur during alcohol-aversive drug treatment significantly lowers the cellular phosphorylation potential.  相似文献   

3.
This paper reports, for the first time, on the analysis of ethanol (EtOH) and acetaldehyde (AcH) concentrations in the blood and brains of Aldh2-knockout (Aldh2-KO) and C57B6/6J (WT) mice. Animals were administrated EtOH (1.0, 2.0 or 4.0 g/kg) or 4-methylpyrazole (4-MP, 82 mg/kg) plus AcH (50, 100 or 200 mg/kg) intraperitoneally. During the blood tests, samples from the orbital sinus of the eye were collected. During the brain tests, dialysates were collected every 5 min (equal to a 15 µl sample) from the striatum using in vivo brain microdialysis. Samples were collected at 5, 10, 15, 20, 25, 30 and 60 min intervals post-EtOH and -AcH injection, and then analyzed by head-space GC. In the EtOH groups, high AcH levels were found in the blood and brains of Aldh2-KO mice, while only small traces of AcH were seen in the blood and brains of WT mice. No significant differences in EtOH levels were observed between the WT and the Aldh2-KO mice for either the EtOH dose. EtOH concentrations in the brain were comparable to the EtOH concentrations in the blood, but the AcH concentrations in the brain were four to five times lower compared to the AcH concentrations in the blood. In the AcH groups, high AcH levels were found in both WT and Aldh2-KO mice. Levels reached a sharp peak at 5 min and then quickly declined for 60 min. Brain AcH concentrations were almost equal to the concentrations found in the blood, where the AcH concentrations were approximately two times higher in the Aldh2-KO mice than in the WT mice, both in the blood and the brain. Our results suggest that systemic EtOH and AcH administration can cause a greater increase in AcH accumulation in the blood and brains of Aldh2-KO mice, where EtOH concentrations in the Aldh2-KO mice were comparable to the EtOH concentrations in the WT mice. Furthermore, detection of EtOH and AcH in the blood and brain was found to be dose-dependent in both genotypes.  相似文献   

4.
Acetic acid bacteria (AAB) are Gram-negative, strictly aerobic microorganisms that show a unique resistance to ethanol (EtOH) and acetic acid (AcH). Members of the Acetobacter and Gluconacetobacter genera are capable of transforming EtOH into AcH via the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes and are used for the industrial production of vinegar.Several mechanisms have been proposed to explain how AAB resist high concentrations of AcH, such as the assimilation of acetate through the tricarboxylic acid (TCA) cycle, the export of acetate by various transporters and modifications of the outer membrane. However, except for a few acetate-specific proteins, little is known about the global proteome responses to AcH.In this study, we used 2D-DIGE to compare the proteome of Acetobacter pasteurianus LMG 1262T when growing in glucose or ethanol and in the presence of acetic acid. Interesting protein spots were selected using the ANOVA p-value of 0.05 as threshold and 1.5-fold as the minimal level of differential expression, and a total of 53 proteins were successfully identified.Additionally, the size of AAB was reduced by approximately 30% in length as a consequence of the acidity. A modification in the membrane polysaccharides was also revealed by PATAg specific staining.  相似文献   

5.
Heparin17-19k, (25, 50, and 100 ng), heparin6k (50 and 100 ng), heparin3k (50, 100, and 200 microg), chondroitin sulfates B (dermatan sulfate) (0.25, 0.5, and 1.0 microg), C (1 and 10 microg), and A (1 and 10 microg) each prolong the activated partial thromboplastin time (APTT) when preincubated with prothrombin to a greater extent than when preincubated with Factor II-deficient plasma prior to their mixing and subsequent additions of APTT reagent and Ca2+. In all cases statistical significance (p < or = 0.05) was observed except with the 2 lower levels of heparin3k. These results suggest that the glycosaminoglycans (GAGs) may exert a direct effect upon prothrombin (FII) in their anticoagulant activity. Pre mix tures of [(FII/25 ng H17-19k) + 447 mmol acetaldehyde (AcH)/L] as well as [(AcH/H) + FII] and [(FII/AcH) + H] each exert a synergistic anticoagulant effect upon APTT. At low AcH concentrations (44.7 mmol/L), neither a synergistic nor an additive effect is seen. H6k and H3k, on premixing with 447 mmol AcH/L, exhibit an additive effect on APTT prolongation but no synergism. Similarly, premixtures of CSB/447 mmol AcH/L/FII show a greater anticoagulant effect than do [(CSB/AcH) + FII] or [(FII/AcH) + CSB] premixtures. CSC-AcH and CSA-AcH patterns are analogous to those of CSB (DS). These data suggest the possibility that AcH, the primary product of ethanol metabolism, may serve as a crosslinking adduct with proteins, in this case, prothrombin, as well as GAGs. Thus ternary complexes between the zymogen form of coagulation factors, GAGs, and AcH are possible, further influencing coagulopathy.  相似文献   

6.
A method for the determination of acetaldehyde (AcH) in biological samples by head-space gas chromatography is presented. Human venous blood (antecubital), rat blood (heart-punctured) rat liver (freeze-clamped), and rat and mouse brain (freeze-clamped) were used as the biological samples. The method involves two steps, in the first of which the samples are deproteinized with perchloric acid (PCA). Rat blood can, alternatively, be hemolyzed with water. In the second step, the deproteinized supernatant or hemolyzed blood is pipetted into a serum bottle, which is sealed with a rubber stopper and brought to 65°C in a sampling turntable. Head-space samples are then automatically taken for GLC analysis. Ethanol causes a nonenzymatic formation of AcH in the PCA supernatants of liver and brain, which can be inhibited by the use of thiourea. This reaction is minor in the blood supernatants and cannot be inhibited there by thiourea. The method described measures the total AcH content without regard to any binding. Some of the AcH in rat blood was shown to be bound.  相似文献   

7.
The subject of the present paper is the simultaneous determination of ethanol (EtOH) and acetaldehyde (AcH) concentrations in the striatum of freely moving rats using an in vivo microdialysis followed by head-space gas chromatography (GC). Major operation conditions of GC were as follows: column, injector and detector temperatures 90, 110 and 200 degrees C, respectively; Supelcowax wide bore capillary column (60 m length, 0.53 mm i.d., 2 microm film thickness); carrier gas, nitrogen; flow rate, 20 ml/min. The recovery of EtOH and AcH at a concentration 40 mM and 250 microM, respectively, by microdialysis showed a maximum of 83.8+/-12.2 and 51.2+/-6.5%, respectively, at a flow rate of 0.8 microl/min. A good linear calibration curve in the concentration range of 5-50 mM for EtOH (r=0.998), and 10-250 microM for AcH (r=0.988) was observed. Microdialysates were collected for 10 min each after insertion of probe into the striatum. Rats were treated with cyanamide (100mg/kg, a potent aldehyde dehydrogenase inhibitor) and 60 min later with EtOH (1g/kg) intraperitoneally. A 10 min sample was about 8 microl. This volume was mixed with 40 microl of 0.002% t-butanol as an internal standard in 0.6N perchloric acid, and then analyzed by head-space GC method. The peak EtOH and AcH concentrations in the striatal dialysates reached maximum at 30 min, and then gradually decreased. This method represents a reasonable tool to quantify in vivo both AcH and EtOH levels simultaneously in rat brain.  相似文献   

8.
The sulfhydryl amino acid, D-penicillamine, but not L-cysteine or L-cystine, when administered to disulfiram-treated rats 1 hour before a dose of ethanol lowered the ethanol-derived, circulating blood acetaldehyde to 10% of control values. This was accompanied by a concomitant lowering of AcH in the expired air of penicillamine-treated rats. Since blood ethanol levels were the same in saline injected controls and in sulfhydryl amino acid-treated rats, this lowering of blood acetaldehyde was not due to any malabsorption of ethanol or to inhibition of the enzyme(s) that metabolize ethanol. By administration of D-penicillamine in multiple, divided doses, blood acetaldehyde generated during ethanol metabolism was reduced an average of 70% over an 8 hour period.  相似文献   

9.
10.
Oxidative stress has been observed in HIV-1 infection and alcoholic liver disease. The formation of reactive oxygen species (ROS) contributes to cell injury through apoptosis and/or necrosis and secretion of proinflammatory cytokines and chemokines. The major sources of ROS and chemokines are the Kupffer cells. During chronic ethanol consumption they are primed and activated for enhanced formation of pro-inflammatory factors, probably as a result of ethanol-induced translocation of gut-derived endotoxin into the circulation. Pro-inflammatory factors produced in the liver stimulate neutrophilic and/or lymphocytic infiltration to this organ. The presence of inflammatory cells in the liver may compromise the hepatocytes to injury by releasing cytotoxic factors, i.e., ROS, cytolytic proteases. Kupffer cells also interact with the glycoprotein 120 of SIV and HIV-1, which can induce oxidative stress and chemokine release. CD4+ lymphocytes that are infected with the virus generate intracellular ROS, which in turn leads to apoptosis and cell death. Downregulation of CD4+ cells contributes to immunodeficiency, while enhanced sequestration of inflammatory cells in the liver during chronic ethanol use with or without HIV-1/SIV may result in hepatocyte injury and exacerbation of alcoholic liver disease.  相似文献   

11.
An antimicrobial peptide designated pediocin AcH was isolated from Pediococcus acidilactici strain H. The pediocin AcH was purified by ion exchange chromatography. The molecular weight of pediocin AcH was determined by SDS-PAGE to be about 2700 daltons. Pediocin AcH was sensitive to proteolytic enzymes, resistant to heat and organic solvents, and active over a wide range of pH. Pediocin AcH exhibited inhibition against several food spoilage bacteria and foodborne pathogens including Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes. It was bactericidal to sensitive cells and acted very rapidly. The bactericidal effect was not produced by either cell lysis or apparent loss of membrane permeability.  相似文献   

12.
An antimicrobial peptide designated pediocin AcH was isolated from Pediococcus acidilactici strain H. The pediocin AcH was purified by ion exchange chromatography. The molecular weight of pediocin AcH was determined by SDS-PAGE to be about 2700 daltons. Pediocin AcH was sensitive to proteolytic enzymes resistant to heat and organic solvents, and active over a wide range of pH. Pediocin AcH exhibited inhibition against several food spoilage bacteria and foodborne pathogens including Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes. It was bactericidal to sensitive cells and acted very rapidly. The bactericidal effect was not produced by either cell lysis or apparent loss of membrane permeability.  相似文献   

13.
《Free radical research》2013,47(11):894-904
Abstract

Chronic alcohol consumption is a well-known risk factor for liver disease, which represents a major cause of morbidity and mortality worldwide. The pathological process of alcohol-induced liver disease is characterized by a broad spectrum of morphological changes ranging from steatosis with minimal injury to more advanced liver damage, including steato-hepatitis and fibrosis/cirrhosis. Experimental and clinical studies increasingly show that the oxidative damage induced by ethanol contribute in many ways to the pathogenesis of alcohol hepatotoxicity. This article describes the contribution of oxidative mechanisms to liver damage by alcohol.  相似文献   

14.
The liver is a major target for both short- and long-term actions of ethanol. The mechanisms that mediate the response of cells and tissues to chronic intake of ethanol are unknown, but it is likely that both adaptive and deleterious responses are triggered by short-term interactions of the cell with ethanol. Cellular signaling processes are candidates to mediate the connection between short- and long-term actions of ethanol. Receptor-coupled signal transduction systems in the plasma membrane of many different cell types are affected by ethanol. In the liver, the signaling processes associated with phospholipases C and D are particularly responsive to ethanol. In this review, we investigate the direct and indirect short-term effects of ethanol on the signal transduction systems in liver and discuss the possible implications for the responses of the liver to chronic ethanol exposure.  相似文献   

15.
The peptide, pediocin AcH, from Pediococcus acidilactici H binds to the cell surface of Lactobacillus plantarum NCDO 955, its resistant mutant and several other sensitive and resistant Gram-positive bacteria but not to Gram-negative bacteria. Sensitive cells, following treatment with pediocin AcH, lost intracellular K ions, u.v.-absorbing materials, became more permeable to ONPG and, in some strains, lysed. Binding of pediocin AcH was maximum at pH 6.0. Anions of several salts inhibited binding of pediocin AcH but this was overcome by increased concentrations of pediocin AcH. Treatment of sensitive cells with 1% SDS, 4 mol/1 guanidine-HCl, several organic solvents and enzymes did not reduce subsequent binding of pediocin AcH. Partially purified cell wall from a sensitive strain was also able to bind pediocin AcH. However, treatment of the cell walls to remove lipoteichoic acid prevented binding. These molecules might, therefore, be one of the binding sites of pediocin AcH.  相似文献   

16.
Alcoholic liver disease is a major biomedical health concern in the United States. Despite considerable research efforts aimed at understanding the progression of the disease, the specific mechanisms leading to alcohol-induced damage remain elusive. Numerous proteins are known to have alcohol-induced alterations in their dynamics. Defining these defects in protein trafficking is an active area of research. In general, two trafficking pathways are affected: transport of newly synthesized secretory or membrane glycoproteins from the Golgi to the basolateral membrane and clathrin-mediated endocytosis from the sinusoidal surface. Both impaired secretion and internalization require ethanol metabolism and are likely mediated by acetaldehyde. Although the mechanisms by which ethanol exposure impairs protein trafficking are not fully understood, recent work implicates alcohol-induced modifications on tubulin or components of the clathrin machinery as potential mediators. Furthermore, the physiological ramifications of impaired protein trafficking are not fully understood. In this review, we will list and discuss the proteins whose trafficking patterns are known to be impaired by ethanol exposure. We will then describe what is known about the possible mechanisms leading to impaired protein trafficking and how disrupted protein trafficking alters liver function and may explain clinical features of the alcoholic patient.  相似文献   

17.
18.
A significant body of evidence indicates that endotoxemia and endotoxin-mediated hepatocellular damage play a crucial role in the pathogenesis of alcoholic liver disease. A close correlation between endotoxemia and the severity of alcohol-induced liver injury is supported by a number of clinical and experimental studies. Elevated intestinal permeability appears to be the major factor involved in the mechanism of alcoholic endotoxemia and the pathogenesis of alcoholic liver disease. Ethanol and its metabolic derivatives, acetaldehyde in particular, alter intracellular signal-transduction pathways leading to the disruption of epithelial tight junctions and an increase in paracellular permeability to macromolecules. Studies addressing the mechanisms of such epithelial disruption and the protective factors that prevent ethanol and acetaldehyde-mediated disruption of epithelial tight junctions are critically important in the investigations toward the search of preventive and therapeutic strategies for alcoholic liver disease.  相似文献   

19.
Ethanol-induced inhibition of leukotriene degradation by omega-oxidation   总被引:2,自引:0,他引:2  
omega-Oxidation of leukotrienes is a major pathway in the degradation and inactivation of these proinflammatory mediators. Ethanol inhibited this process in vivo and in vitro. In rat liver in vivo the catabolism of LTE4 to omega-carboxylated leukotrienes was inhibited by 57% by an ethanol dose of 25 mmol/kg body mass administered intragastrically. The site of inhibition was the oxidation of omega-hydroxy-N-acetyl-LTE4 to omega-carboxy-N-acetyl-LTE4 resulting in an accumulation of omega-hydroxy-N-acetyl-LTE4 and of N-acetyl-LTE4. Analogous results were obtained for the oxidative degradation of LTB4 and omega-hydroxy-LTB4 in rat hepatocyte suspensions. Ethanol, at a concentration of 12.5 mmol/l (0.07%; by vol.), caused 68% inhibition of the oxidation of omega-hydroxy-LTB4 by 50% in hepatocyte suspensions. The conversion of omega-hydroxy-LTB4 to omega-carboxy-LTB4 by rat and human liver cytosol was inhibited by ethanol with half maximal concentrations of 100 mumols/l and 300 mumols/l, respectively. Our measurements indicate that direct interference by ethanol of the omega-oxidation of leukotrienes as well as an increased NADH/NAD+ ratio induced by ethanol led to the inhibition of leukotriene degradation. The impairment of leukotriene inactivation in the liver by ethanol may contribute to the development of the inflammatory reaction in acute alcoholic liver disease.  相似文献   

20.
Organosolv pretreatment of lignocellulose pertains to a biomass fractionation process to obtain cellulosic pulp, high-purity lignin, and hemicellulosic syrup. In the present work, sugarcane bagasse was delignified by aqueous acetic acid (AcH) under atmospheric pressure with addition of sulfuric acid (SA) as a catalyst. Based on the multilayered structure of plant cell wall and the inhibitive effect of dissolved lignin on delignification rate, a novel pseudo-homogeneous kinetic model was proposed by introducing the concept of “potential degree of delignification (d D)” into the model. It was found that delignification rate was a first-order reaction with respect to SA concentration, while AcH concentration showed a high reaction order to delignification rate. The activation energy for delignification was determined to be 64.41 kJ/mol. The relationships of kinetic constants and d D with reaction temperature, AcH, and SA concentrations were determined according to experimental data. Mechanism analysis indicated that cleavage of α-aryl ethers bonds were mainly responsible for the formation of lignin fragments. AcH concentration affected the solubility parameter (δ value) of AcH solution and the ability to form hydrogen bonds with lignin fragments. Therefore, the driving force for solubilizing lignin fragments increased with AcH concentration, and thus AcH concentration had a very significant influence on delignification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号