首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Two compounds, [Eu(H2O)7][Al(OH)6Mo6O18] · 4H2O (1) and {(C2H5NO2)2[Eu(H2O)5]}[Al(OH)6Mo6O18] · 10H2O (2), have been synthesized by conventional solution method and determined by single-crystal X-ray diffraction. Compound 1 shows a 1D chain structure built up of alternating Anderson-type polyanions [Al(OH)6Mo6O18]3− and hydrated rare-earth ions Eu3+. Compound 2 displays a 3D supramolecular network structure containing 1D sandglass-like channels along c axis, which were occupied by repetitive array of (H2O)8 clusters. Extensive hydrogen bonds play an important role in the formation of the 3D structures of 1 and 2. Luminescence measurements reveal that 1 and 2 exhibit intense red and orange fluorescent emission at room temperature, respectively. Origin of the distinct emission can be assigned to the different site symmetries of Eu3+ centers in the two compounds. These results are consistent with the crystal structures of the two compounds.  相似文献   

2.
In order to study the role of N-terminal substitutions of peptide sequences related to the active site of -melanotropin, [Glp5]-MSH(5–10), [Glp5, -Phe7]-MSH(5–10), [Sar5, -Phe7]-MSH(5–10), [Nle4, -Phe7]-MSH(4–10), [N-carbamoyl]-MSH(5–10), and formyl and acetyl derivatives of -MSH(5–10), [Gly5]-MSH(5–10) and [Gly5, -Phe7]-MSH(5–10), were synthesized in solution. The N-terminal acylations enhance by 2 to 10 times the melanin-dispersing activity of the unsubstituted sequences. Alkylation of the N-terminus does not change the biological activity of the parent peptide, suggesting the necessity of a carbonyl group for increasing the hormonal effect.  相似文献   

3.
Supramaximal doses of cholecystokinin (CCK) induce in vitro submaximal biological responses (i.e., smaller by 50% than the response to a maximal dose of CCK), desensitization and residual stimulation, and in vivo secretory inhibition and edematous pancreatitis. It has been reported previously that supramaximal doses of Boc-[Nle28-Nle31]CCK(27–32)/-phenylethylester (JMV180) do not produce these effects. The aim of this study was to analyze the in vivo response of pancreatic secretion of the rat to a wide dose range of Boc-[Nle28-Nle31]CCK(26–33) (JMV118), an analog of CCK8 with the same activity spectrum as CCK8, to JMV180 and to Boc-[Nle28-Nle31]CCK(27–32)-phenylethylamide (JMV170). The three peptides were administered as intravenous infusions and as bolus intravenous injections. In the case of infusions, the same maximal effect was observed with all three peptides. It was obtained with 22.5 pmol/kg · min of JMV118; JMV180 and JMV170 were about 700 times less potent. In the case of bolus injections, the maximal response to JMV118 was observed with 450 pmol/kg, and the response peaked 10–15 min after the injection. Higher doses of JMV118 induced a secretory peak that was smaller and delayed relative to the moment of injection. JMV180 and JMV170 were about 500 times less potent: the maximal response was observed with 218700 pmol/kg and peaked 10–15 min after the injection. Larger doses of JMV180 and JMV170 produced neither supramaximal inhibition nor a delayed peak response, but induced a sustained stimulation of pancreatic secretion that could last more than 3 h after the injection. These data indicate that single large doses of JMV180 and JMV170 can produce a large and long-lasting stimulation of pancreatic secretion in vivo, a goal that cannot be reached with JMV118 or CCK8.  相似文献   

4.
Biological properties of amino-terminal PTHrP analogues modified in the region 11–13 were examined using ROS 17/2.8 cells. [Leu11,D-Trp12,Arg13,Tyr36]PTHrP(1–36)amide had a 17-fold lower binding affinity for the receptor (apparent Kd: 5 × 10−8 M) than [Tyr36]PTHrP(1–36)amide or [Arg11,13,Tyr36]PTHrP(1–36)amide (apparent Kd for both: 2 × 10−9 M). Moreover, it is only a weak partial agonist despite completely inhibiting radioligand binding. [Leu11,D-Trp12,Arg13,Tyr36,Cys38]PTHrP(7–38) and PTHrP(7–34)amide had similar receptor affinities (apparent Kds: 5 × 10−8 M and 8 × 10−8 M), while that of [Nle8,18,Tyr34]bPTH(7–34)amide was more than 10-fold lower (apparent Kd: 2 × 10−6 M). These changes in biological properties suggest that high affinity receptor binding requires both amino- and carboxyl-terminal domains of the PTHrP(1–36) sequence and/or intramolecular interactions which are impaired by the D-Trp substitution for Gly12.  相似文献   

5.
Inactivation of cholecystokinin octapeptide in vitro involves a metalloendopeptidase (EC 3.4.24.11) also called enkephalinase that inactivated the peptide both by a sequential pathway of hydrolysis (removal of Phe-NH2 followed by cleavage of Trp-Met-Asp) and by an endopeptidase action (production of the tetrapeptides).

As enkephalinase cleaved CCK-8 at the Gly4-Trp5, Trp5-Met6 and Asp7-Phe8 bonds, we investigated the stability of analogues having: (1) substitutions of amino acids by a stereoisomer, (2) a substitution of Asp7 by a β Ala residue and (3) modifications of the Trp residue obtained by replacing the nitrogen atom in the indol ring by either an oxygen ([Bfa5]CCK-8) or a sulphur atom ([Bta5]CCK-8). Among these different CCK derivatives, [βAla7], [ Met6] and [ Trp5]CCK-8 were not hydrolyzed by enkephalinase: [ Alad]CCK-8 was rapidly cleaved by the enzyme. [Bta5] and [Bfa5]CCK-8 did not prove to be quite resistant; however the C-terminal tetrapeptides having the same modifications on the Trp residue were not cleaved although they interacted with the enzyme binding site. The stability and biological activity of the peptidase-resistant analogues of CCK-8 remain to be determined in vivo.  相似文献   


6.
The bis(oxazoline) ligand, 2,2-bis[4(R)-phenyl-1,3-oxazolon-2-yl]propane (bpop), was introduced to the η6-benzenemthenium(II) moiety on treatment with [Ru(η6-C6H6)Cl2]2 to give [Ru(η6-C6H6)(bpop)Cl]+. Aquo and amine complexes [Ru(η6-C6H6)(bpop)(L)]2+ (L = H2O (1), NH2R; R = H (2) , Me (3) , and n-Bu (4) ) were prepared by treating the chloride complex with AgBF4 in the presence of L. X-ray structure determinations of 1 and 3 were carried out. Both complexes possessed a three-leg piano stool structure with the N or O donors located at the three comers of a pseudo octahedron. The aquo complex 1 exhibited a dynamic NMR feature in which two magnetically nonequivalent oxazoline parts observed at lower temperatures were interchanged with each other at higher temperatures. This observation was ascribed to the formation of a C2-symmetric 16-electron intermediate via Ru-OH2 cleavage, which is slower in acetone than in dichloromethane owing to more effective solvation by acetone around hydrogens of the coordinated water molecule. The two diastereotopic N-hydrogens of 4 underwent deuterium exchange with CD3OD with greatly different rates from each other owing to different energy of NHO (D) (CD3) interaction. Carboxylate and sulfonate ions (A) formed second sphere complexes with 4 by means of NHA hydrogen bonding, as evidenced by continuous shift of NH2 resonances with increasing amounts of the anions added.  相似文献   

7.
Waser B  Rehmann R  Rivier J  Vale W  Reubi JC 《Peptides》2006,27(12):3029-3038
CRF has powerful receptor-mediated cardiovascular actions. To evaluate the precise distribution of CRF receptors, in vitro CRF receptor autoradiography with 125I-[Tyr0, Glu1, Nle17]-sauvagine or [125I]-antisauvagine-30 was performed in the rodent and human cardiovascular system. An extremely high density of CRF2 receptors was detected with both tracers in vessels of rodent lung, intestine, pancreas, mesenterium, kidney, urinary bladder, testis, heart, brain, and in heart muscle. In humans, CRF2 receptors were detected with 125I- antisauvagine-30 at low levels in vessels of kidneys, intestine, urinary bladder, testis, heart and in heart muscle, while only heart vessels were detected with 125I-[Tyr0, Glu1, Nle17]-sauvagine. This is the first extensive morphological study reporting the extremely wide distribution of CRF2 receptors in the rodent cardiovascular system and a more limited expression in man, suggesting a species-selective CRF receptor expression.  相似文献   

8.
The reaction of cis-[PtCl2(PPh3)2] with trisubstituted thioureas [R1R2NC(=S)NHR3] in refluxing methanol with triethylamine base, followed by addition of NaBPh4 gives the salts [Pt{SC(=NR1R2)NR3}(PPh3)2]BPh4 in high yield; a range of thiourea substituents, including chiral, fluorescent and chromophoric groups can be incorporated. The azo dye-derived complex [Pt{SC(=N(CH2CH2)2O)NC6H4N=NC6H4NMe2}(PPh3)2]BPh4 has been characterised by a single-crystal X-ray diffraction study. The formation of a fluorescein-derivatised platinum–thiourea complex is also described. Reaction of cis-[PtCl2(PPh3)2] with PhNHC(S)NHPh or EtNHC(S)NHEt, triethylamine and NaBPh4 gives, respectively, [Pt{SC(=NHPh)NPh}(PPh3)2]+ and the known cation [Pt{SC(=NHEt)NEt}(PPh3)2]+, isolated as tetraphenylborate salts. Reaction of cis-[PtCl2(PPh3)2] with an excess of Na[MeNHC(S)NCN] in methanol gives the bis(thiourea monoanion) complex trans-[Pt{SC(=N---CN)NHMe}2(PPh3)2], characterised by NMR spectroscopy and an X-ray crystal structure determination. When cis-[PtCl2(PPh3)2] is reacted with 1 equiv. of Na[MeNHC(S)N---CN] in methanol, with added NaBPh4, a mixture of isomers of the [Pt{SC(=NHCN)NMe}(PPh3)2]+ cation is obtained.  相似文献   

9.
To study structure-activity relationships of growth hormone-releasing hormone (GHRH), a competitive binding assay was developed using cloned porcine adenopituitary GHRH receptors expressed in human kidney 293 cells. Specific binding of [His1,125I-Tyr10,Nle27]hGHRH(1–32)-NH2 increased linearly with protein concentration (10–45 μg protein/tube). Binding reached equilibrium after 90 min at 30°C and remained constant for at least 240 min. Binding was reversible to one class of high-affinity sites (Kd = 1.04 ± 0.19 nM, Bmax = 3.9 ± 0.53 pmol/mg protein). Binding was selective with a rank order of affinity (IC50) for porcine GHRH (2.8 ± 0.51 nM), rat GHRH (3.1 ± 0.69 nM), [N-Ac-Tyr1, -Arg2]hGHRH(3–29)-NH2 (3.9 ± 0.58 nM), and [ -Thr7]GHRH(1–29)-NH2 (189.7 ± 14.3 nM), consistent with their binding to a GHRH receptor. Nonhydrolyzable guanine nucleotides inhibited binding. These data describe a selective and reliable method for a competitive GHRH binding assay that for the first time utilizes rapid filtration to terminate the binding assay.  相似文献   

10.
The intracellular free Ca2+ ion concentration ([Ca2+]i) was measured using fura-2 microspec-trofluorimetry in individual rat pancreatic β-cells prepared by enzymatic digestion and fluorescence-activated cell sorting. The mean basal concentration of [Ca2+]i in β-cells in the presence of 4.4 mM glucose and 1.8 mM Ca2+ was 112±1.6 nM (n=207). The action of acetylcholine (ACh) was concentration-dependent, and raising the concentration resulted in [Ca2+]i spikes of increasing amplitude and duration in some, but not all of the β-cells. In addition, the β-cells demonstrated variable sensitivity to ACh. The increases in [Ca2+]i were rapid, transient and were blocked by atropine at 10-6M. A brief exposure to 50 mM K+ resulted in a transient increase in [Ca2+]i similar to that induced by ACh, but resistant to atropine. A high concentration of ACh (100μL 10-4M or 10-3M) induced [Ca2+]i oscillations in 11 out of 57 β-cells in the presence of 4.4 mM glucose. Using calcium channel blockers and Ca2+ free medium, the source of the increase in [Ca2+]i was deduced to be from extracellular spaces. Changing the temperature from 22 to 37°C did not affect the action of ACh on [Ca2+]i. These data strongly suggest that ACh exerted a direct action on [Ca2+]i in normal rat pancreatic β-cells and support a role for Ca2+ as a second messenger in the action of ACh.  相似文献   

11.
A new compound containing a cubane tungsten chalcogenide cluster [W43-Te)4(CN)12]6− and Ca2+ complex units has been prepared by the reaction of aqueous solution of K6[W43-Te)4(CN)12] · 5H2O with the solution of a Ca(NO3)2 and phen(1,10-phenanthroline) (1:2 molar ratio) in a solvent mixture of H2O/EtOH. The structure of [{Ca(phen)2(H2O)}{Ca(phen)(H2O)4}{Ca(phen)2(H2O)3}][W4Te4(CN)12] · 5H2O 1 has been determined by X-ray crystallography. Compound 1 contains [{Ca(phen)(H2O)4}{Ca(phen)2(H2O)3}][W43- Te)4(CN)12] units bridged by {Ca(phen)2(H2O)}2+ units to form an one-dimensional zigzag chain structure. Interestingly, compound 1 showed a heterogeneous catalytic activity in the transesterification of a range of esters with methanol under the mild conditions. Moreover, it can be reused without any loss of activity through 10 runs with ester.  相似文献   

12.
The Pt2 (II) isomeric terminal hydrides [(CO)(H)Pt(μ-PBu2)2Pt(PBu2H)]CF3SO3 (1a), and [(CO)Pt(μ-PBu2)2Pt(PBu2H)(H)]CF3SO3 (1b), react rapidly with 1 atm of carbon monoxide to give the same mixture of two isomers of the Pt2 (I) dicarbonyl [Pt2(μ-PBu2)(CO)2(PBu2H)2]CF3SO3 (3-Pt); the solid state structure of the isomer bearing the carbonyl ligands pseudo-trans to the bridging phosphide was solved by X-ray diffraction. A remarkable difference was instead found between the reactivity of 1a and 1b towards carbon disulfide or isoprene. In both cases 1b reacts slowly to afford [Pt2(μ-PBu2)(μ,η22-CS2)(PBu2H)2]CF3SO3 (4-Pt), and [Pt2(μ-PBu2)(μ,η22-isoprene) (PBu2H)2]CF3SO3 (6-Pt), respectively. In the same experimental conditions, 1a is totally inert. A common mechanism, proceeding through the preassociation of the incoming ligand followed by the P---H bond formation between one of the bridging P atoms and the hydride ligand, has been suggested for these reactions.  相似文献   

13.
The kinetics of substitution reactions of [η-CpFe(CO)3]PF6 with PPh3 in the presence of R-PyOs have been studied. For all the R-PyOs (R = 4-OMe, 4-Me, 3,4-(CH)4, 4-Ph, 3-Me, 2,3-(CH)4, 2,6-Me2, 2-Me), the reactions yeild the same product [η5-CpFe(CO)2PPh3]PF6, according to a second-order rate law that is first order in concentrations of [η5-CpFe(CO)3]PF6 and of R-PyO but zero order in PPh3 concentration. These results, along with the dependence of the reaction rate on the nature of R-PyO, are consistent with an associative mechanism. Activation parameters further support the bimmolecular nature of the reactions: ΔH = 13.4 ± 0.4 kcal mol−1, ΔS = −19.1 ± 1.3 cal k−1 mol−1 for 4-PhPyO; ΔH = 12.3 ± 0.3 kcal mol−1, ΔS = 24.7 ±1.0 cal K−1 mol−1 for 2-MePyO. For the various substituted pyridine N-oxides studied in this paper, the rates of reaction increase with the increasing electron-donating abilities of the substituents on the pyridine ring or N-oxide basicities, but decrease with increasing 17O chemical shifts of the N-oxides. Electronic and steric factors contributing to the reactivity of pyridine N-oxides have been quantitatively assessed.  相似文献   

14.
The lithiation of indole, using a slight excess of n-butyl lithium in THF, followed by methylation and reaction with [Cr(CO)6] in refluxing dibutyl ether, resulted in the formation of [Cr(η6-N-methylindole)(CO)3] (1a) and [Cr(η6-N-methyl-2-methylindole)(CO)3] (1b). In contrast, lithiation of quinoline in THF, silylation and the subsequent reaction with [Cr(CO)6] under similar reaction conditions, afforded [Cr(η6-N-trimethylsilyl-2-butyl-1,2-dihydroquinoline)(CO)3] (2) and [Cr(η6-{2-butyl-1,2,3,4-tetrahydroquinoline})(CO)3] (3). The formation of [Cr(η6-2,2′-bis{N-methylindolyl})(CO)3] (4) implied lithiation at the 2-position of 1a. However, metallation at the 7-position was also indicated during the same reaction. In the presence of [Mn(CO)5Br], product 4 and the transmetallation product [Cr(η6-{7-(N-methylindolyl)Mn(CO)5})(CO)3] (5) were isolated. Reaction with titanocene dichloride gave [Cr(η6-{2-(N-methylindolyl)TiCp2Cl})(CO)3] (6), which slowly converted into [TiCp2{Cr(η6-2-(N-methylindolyl)(CO)3}2] (7).  相似文献   

15.
Two new dicyanamide bridged 1D polynuclear copper(II) complexes [Cu(L1){μ1,5-N(CN)2}]n (1) [L1H = C6H5C(O)NHNC(CH3)C5H4N] and [Cu(L2){μ1,5-N(CN)2}]n (2) [L2H=C6H5C(O)CHC(CH3)NCH2CH2N(CH3)2] have been synthesised and structures of both the complexes and their crystal packing arrangements have been established by X-ray crystallography. For complex 1, a tridentate hydrazone ligand (L1H) obtained by the condensation of benzhydrazide and 2-acetylpyridine is used, whereas a tridentate Schiff base (L2H) derived from benzoylacetone and 2-dimethylaminoethylamine is employed for the preparation of complex 2. Variable temperature magnetic susceptibility measurement studies indicate there are weak antiferromagnetic interactions with J values −0.10 and −1.41 cm−1 for 1 and 2, respectively.  相似文献   

16.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

17.
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca2+ levels ([Ca2+]i) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca2+ indicator. Clomiphene at concentrations between 10-50 μM increased [Ca2+]i in a concentration-dependent manner. The [Ca2+]i signal was biphasic with an initial rise and a slow decay. Ca2+ removal inhibited the Ca2+ signal by 41%. Adding 3 mM Ca2+ increased [Ca2+]i in cells pretreated with clomiphene in Ca2+-free medium, confirming that clomiphene induced Ca2+ entry. In Ca2+-free medium, pretreatment with 50 μM brefeldin A (to permeabilize the Golgi complex), 1 μM thapsigargin (to inhibit the endoplasmic reticulum Ca2+ pump), and 2 μM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 μM clomiphene-induced store Ca2+ release. Conversely, pretreatment with 50 μM clomiphene in Ca2+-free medium abolished the [Ca2+]i increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 μM clomiphene-induced Ca2+release was unaltered by inhibiting phospholipase C with 2 μM 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 μM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca2+]i increases in PC3 cells by releasing store Ca2+ from multiple stores in an phospholipase C-independent manner, and by activating Ca2+ influx; and clomiphene was of mild cytotoxicity.  相似文献   

18.
The novel ligand 4,5-bis(diphenylthiophosphinoyl)-1,2,3-triazole, LT-S2H, has been synthesized, converted to the triethylamine salt, and to the palladium complexes Pd[LT-S2]2 and Pd[LT-S2][η3-methallyl]. Structures of LT-S2H, of its 2-acetyl derivative, of Pd[LT-S2]2 and Pd[LT-S2][η3-methallyl] were determined by X-ray crystallography. In the last two complexes the LT-S2 ligand was N,S-bonded.  相似文献   

19.
The reaction of H2[PtCl6] · 6H2O and (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O (18C6 = 18-crown-6) with 9-methylguanine (MeGua) proceeded with the protonation of MeGua forming 9-methylguaninium hexachloroplatinate(IV) dihydrate (MeGuaH)2[PtCl6] · 2H2O (1).The same compound was obtained from the reaction of Na2[PtCl6] with (MeGuaH)Cl.On the other hand, the reaction of guanosine (Guo) with (H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O in methanol at 60 °C proceeded with the cleavage of the glycosidic linkage and with ligand substitution to give a guaninium complex of platinum(IV), [PtCl5(GuaH)] · 1.5(18C6) · H2O (2).Within several weeks in aqueous solution a slow reduction took place yielding the analogous guaninium platinum(II) complex, [PtCl3(GuaH)] · (18C6) · 2Me2CO (3).H2[PtCl6] · 6H2O and guanosine was found to react in water, yielding (GuoH)2[PtCl6] (4) and in ethanol at 50 °C, yielding [PtCl5(GuoH)] · 3H2O (5).Dissolution of complexes 2 and 5 in DMSO resulted in the substitution of the guaninium and guanosinium ligands, respectively, by DMSO forming [PtCl5(DMSO)].Reactions of 1-methylcytosine (MeCyt) and cytidine (Cyd) with H2[PtCl6] · 6H2O and(H3O)[PtCl5(H2O)] · 2(18C6) · 6H2O resulted in the formation of hexachloroplatinates with N3 protonated pyrimidine bases as cation (MeCytH)2[PtCl6] · 2H2O (6) and (CydH)2[PtCl6] (7), respectively. Identities of all complexes were confirmed by 1H, 13C and 195Pt NMR spectroscopic investigations, revealing coordination of GuoH+ in complex 5 through N7 whereas GuaH+ in complex 3 may be coordinated through N7 or through N9. Solid state structure of hexachloroplatinate 1 exhibited base pairing of the cations yielding (MeGuaH+)2, whereas in complex 6 non-base-paired MeCytH+ cations were found. In both complexes, a network of hydrogen bonds including the water molecules was found. X-ray diffraction analysis of complex 3 exhibited a guaninium ligand that is coordinated through N9 to platinum and protonated at N1, N3 and N7. In the crystal, these NH groups form hydrogen bonds N–HO to oxygen atoms of crown ether molecules.  相似文献   

20.
Addition of (Me3SiNHCH2CH2)2NH (H3[N3(TMS)]) or (Me3SiNH-o-C6H4)2NH (H3[ArN3(TMS)]) to a solution of TaMe5 yields [N3(TMS)]TaMe2 or [ArN3(TMS)]TaMe2, respectively. An X-ray study of [ArN3(TMS)]TaMe2 showed it to have an approximate trigonal bipyramidal structure in which the two methyl groups are in equatorial positions and the triamido ligand is approximately planar. Addition of (C6F5NHCH2CH2)2NH (H3[N3(C6F5)]) to TaMe5 yields first [(C6F5NCH2CH2)2NH]TaMe3, which then decomposes to [(C6F5NCH2CH2)2N]TaMe2. An X-ray study of [(C6F5NCH2CH2)2N]TaMe2 shows it to be approximately a trigonal bipyramid, but the C6F5 rings are oriented so that they lie approximately in the TaN3 plane and two ortho fluorines interact weakly with the metal. Trimethylaluminum attacks the central nitrogen atom in [N3(TMS)]TaMe2 to give [(Me3SiNCH2CH2)2NAlMe3]TaMe2, an X-ray study of which shows it to be a trigonal bipyramidal species similar to the first two structures, except that the C-Ta-C bond angle is approximately 30° smaller (106.6(12)°). Addition of B(C6F5)3 to [(C6F5NCH2CH2)2NH]TaMe3 yields {[(C6F5NCH2CH2)2NH]TaMe2}+ {B(C6F5)3Me}, the structure of which most closely resembles that of [(Me3SiNCH2CH2)2NAlMe3]TaMe2 in that the C-Ta-C angle is 102.0(6)°. The C6F5 rings in {[(C6F5NCH2CH2)2NH]TaMe2}+ are turned roughly perpendicular to the TaN3 plane, i.e. ortho fluorines do not interact with the metal in this molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号