首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolution of genome size: A phylogenetic test of the DNA loss hypothesis   总被引:1,自引:0,他引:1  
It has been recently suggested that the C-value paradox, the lack of an obvious association between organismal complexity and genome size, can result simply from biases in insertion and deletion rates—the DNA loss hypothesis. This hypothesis has been heavily criticized, particularly because its evidence, a negative relationship between genome size and DNA loss rate, is based on a highly selective use of the available data. In this study it is shown that the even the most favorable interpretation of the data favoring the DNA loss hypothesis is largely an artifact of phylogenetic nonindependence, supporting the assertion made by other authors that the mechanisms underlying genome size evolution might be more complex than envisioned by the DNA loss hypothesis. The text was submitted by the author in English.  相似文献   

2.
It has long been recognized that bats and birds contain less DNA in their genomes than their non-flying relatives. It has been suggested that this relates to the high metabolic demands of powered flight, a notion that is supported by the fact that pterosaurs also appear to have exhibited small genomes. Given the long-standing interest in this question, it is surprising that almost no data have been presented regarding genome size diversity among megabats (family Pteropodidae). The present study provides genome size estimates for 43 species of megabats in an effort to fill this gap and to test the hypothesis that all bats, and not just microbats, possess small genomes. Intriguingly, megabats appear to be even more constrained in terms of genome size than the members of other bat families.  相似文献   

3.
Mutational equilibrium model of genome size evolution   总被引:22,自引:0,他引:22  
The paper describes a mutational equilibrium model of genome size evolution. This model is different from both adaptive and junk DNA models of genome size evolution in that it does not assume that genome size is maintained either by positive or stabilizing selection for the optimum genome size (as in adaptive theories) or by purifying selection against too much junk DNA (as in junk DNA theories). Instead the genome size is suggested to evolve until the loss of DNA through more frequent small deletions is equal to the rate of DNA gain through more frequent long insertions. The empirical basis for this theory is the finding of a strong correlation and of a clear power-function relationship between the rate of mutational DNA loss (per bp) through small deletions and genome size in animals. Genome size scales as a negative 1.3 power function of the deletion rate per nucleotide. Such a relationship is not predicted by either adaptive or junk DNA theories. However, if genome size is maintained at equilibrium by the balance of mutational forces, this empirilical relationship can be readily accommodated. Within this framework, this finding would imply that the rate of DNA gain through large insertions scales up a quarter-power function of genome size. On this view, as genome size grows, the rate of growth through large insertions is increasing as a quarter power function of genome size and the rate of DNA loss through small deletions increases linearly, until eventually, at the stable equilibrium genome size value, rates of growth and loss equal each other. The current data also suggest that the long-term variation is genome size in animals is brought about to a significant extent by changes in the intrinsic rates of DNA loss through small deletions. Both the origin of mutational biases and the adaptive consequences of such a mode of evolution of genome size are discussed.  相似文献   

4.
It has often been suggested that the genome sizes of birds are constrained relative to other tetrapods owing to the high metabolic demands of powered flight and the link between nuclear DNA content and red blood cell size. This hypothesis predicts that hummingbirds, which engage in energy-intensive hovering flight, will display especially constrained genomes even relative to other birds. We report genome size measurements for 37 species of hummingbirds that confirm this prediction. Our results suggest that genome size was reduced before the divergence of extant hummingbird lineages, and that only minimal additional reduction occurred during hummingbird diversification. Unlike in some other avian taxa, the small amount of variation observed within hummingbirds is not explained by variation in respiratory and flight-related parameters. Unexpectedly, genome size appears to have increased in four unrelated hummingbird species whose distributions are centred on humid forests of the upper-tropical elevational zone on the eastern slope of the Andes. This suggests that the secondary expansion of the genome may have been mediated by biogeographical and demographic effects.  相似文献   

5.
Differences in nuclear DNA content in vertebrates have been shown to be correlated with cell size, cell division rate, and embryonic developmental rate. We compare seven species of anuran amphibians with a three-fold range of genome sizes. Parameters examined include the number and density of cells in a number of embryonic structures, and the change in cell number in the CNS during development. We show that genome size is correlated with cell proliferation rate and with developmental rate at different stages of embryonic development, but that the correlation between genome size and cell size is only evident at later stages. We discuss the evolution of genome size in amphibians. Our discussion takes into account data that reportedly support two conflicting hypotheses: the "skeletal DNA" hypothesis, which claims a selective role for differences in genome size, and the "junk DNA" hypothesis, which claims that differences in genome size are a random result of the accumulation of noncoding DNA sequences. We show that these supposedly conflicting hypotheses can be integrated into a more complex and inclusive model for the evolution of genome size.  相似文献   

6.
Within the salamander family Plethodontidae, five different clades have evolved high levels of enucleated red blood cells, which are extremely unusual among non-mammalian vertebrates. In each of these five clades, the salamanders have large genomes and miniaturized or attenuated body forms. Such a correlation suggests that the loss of nuclei in red blood cells may be related, in part, to the interaction between large genome size and small body size, which has been shown to have profound morphological consequences for the nervous and visual systems in plethodontids. Previous work has demonstrated that variation in both the level of enucleated cells and the size of the nuclear genome exists among species of the monophyletic plethodontid genus Batrachoseps. Here, we report extensive intraspecific variation in levels of enucleated red blood cells in 15 species and provide measurements of red blood cell size, nucleus size, and genome size for 13 species of Batrachoseps. We present a new phylogenetic hypothesis for the genus based on 6150 bp of mitochondrial DNA sequence data from nine exemplar taxa and use it to examine the relationship between genome size and enucleated red blood cell morphology in a phylogenetic framework. Our analyses demonstrate positive direct correlations between genome size, nucleus size, and both nucleated and enucleated cell sizes within Batrachoseps, although only the relationship between genome size and nucleus size is significant when phylogenetically independent contrasts are used. In light of our results and broader studies of comparative hematology, we propose that high levels of enucleated, variably sized red blood cells in Batrachoseps may have evolved in response to rheological problems associated with the circulation of large red blood cells containing large, bulky nuclei in an attenuate organism.  相似文献   

7.
Genomic gigantism: DNA loss is slow in mountain grasshoppers   总被引:15,自引:0,他引:15  
Several studies have shown DNA loss to be inversely correlated with genome size in animals. These studies include a comparison between Drosophila and the cricket, Laupala, but there has been no assessment of DNA loss in insects with very large genomes. Podisma pedestris, the brown mountain grasshopper, has a genome over 100 times as large as that of Drosophila and 10 times as large as that of Laupala. We used 58 paralogous nuclear pseudogenes of mitochondrial origin to study the characteristics of insertion, deletion, and point substitution in P. pedestris and Italopodisma. In animals, these pseudogenes are "dead on arrival"; they are abundant in many different eukaryotes, and their mitochondrial origin simplifies the identification of point substitutions accumulated in nuclear pseudogene lineages. There appears to be a mononucleotide repeat within the 643-bp pseudogene sequence studied that acts as a strong hot spot for insertions or deletions (indels). Because the data for other insect species did not contain such an unusual region, hot spots were excluded from species comparisons. The rate of DNA loss relative to point substitution appears to be considerably and significantly lower in the grasshoppers studied than in Drosophila or Laupala. This suggests that the inverse correlation between genome size and the rate of DNA loss can be extended to comparisons between insects with large or gigantic genomes (i.e., Laupala and Podisma). The low rate of DNA loss implies that in grasshoppers, the accumulation of point mutations is a more potent force for obscuring ancient pseudogenes than their loss through indel accumulation, whereas the reverse is true for Drosophila. The main factor contributing to the difference in the rates of DNA loss estimated for grasshoppers, crickets, and Drosophila appears to be deletion size. Large deletions are relatively rare in Podisma and Italopodisma.  相似文献   

8.
On the evolution of genome size of birds   总被引:5,自引:0,他引:5  
We measured genome size (nuclear DNA content) by fluorescence flow cytometry in 55 species of birds representing 12 different orders. Similar studies were performed in approximately 100 species by laboratories using absorption cytophotometry of Feulgen-stained nuclei. Although there have been apparent discrepancies in the assigned values for the species used as a reference, the values obtained in the different laboratories are generally in agreement. When the data are standardized in relation to a diploid (2C) value of 2.5 picograms (pg) of DNA for the domestic chicken (Gallus gallus domesticus), the mean for DNA content in 135 species representing 17 orders is 2.82 +/- 0.33 (SD) pg with a range of 2.0-3.8 pg. Thus the genome size of birds is the most conservative of any vertebrate class and, all values considered, is smaller and more uniform in size than previous estimates would indicate. This could be explained by a previously unexplored hypothesis: that the genome of birds has evolved from a small ancestral genome that was reduced before emergence of the protoavian.  相似文献   

9.
Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.  相似文献   

10.
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha‐proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein‐coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome‐wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad‐scale genome streamlining via loss of protein‐coding genes as well as noncoding, parasitic DNA elements.  相似文献   

11.
Closely related species of Drosophila tend to have similar genome sizes. The strong imbalance in favor of small deletions relative to insertions implies that the unconstrained DNA in Drosophila is unlikely to be passively inherited from even closely related ancestors, and yet most DNA in Drosophila genomes is intergenic and potentially unconstrained. In an attempt to investigate the maintenance of this intergenic DNA, we studied the evolution of an intergenic locus on the fourth chromosome of the Drosophila melanogaster genome. This 1.2-kb locus is marked by two distinct, large insertion events: a nuclear transposition of a mitochondrial sequence and a transposition of a nonautonomous DNA transposon DNAREP1_DM. Because we could trace the evolutionary histories of these sequences, we were able to reconstruct the length evolution of this region in some detail. We sequenced this locus in all four species of the D. melanogaster species complex: D. melanogaster, D. simulans, D. sechellia, and D. mauritiana. Although this locus is similar in size in these four species, less than 10% of the sequence from the most recent common ancestor remains in D. melanogaster and all of its sister species. This region appears to have increased in size through several distinct insertions in the ancestor of the D. melanogaster species complex and has been shrinking since the split of these lineages. In addition, we found no evidence suggesting that the size of this locus has been maintained over evolutionary time; these results are consistent with the model of a dynamic equilibrium between persistent DNA loss through small deletions and more sporadic DNA gain through less frequent but longer insertions. The apparent stability of genome size in Drosophila may belie very rapid sequence turnover at intergenic loci.  相似文献   

12.
ComparingAlliumgenome size measurements of different authors,we noticed that the estimates for certain species diverge morestrongly than one would have expected in view of the methodologicaladvantages of the material. As the matter has theoretical significancefor explaining the biological role of genome size variation,we measured, by Feulgen densitometry, 28 species and altogether57 accessions or cultivars. Flow cytometric measurements supplementedthese data. The current hypothesis of a discontinuous and step-wisedistribution of DNA amounts inAlliumseems questionable, as mostof our DNA values did not appear in the corresponding DNA groupas proposed previously. On the other hand, we can confirm thatthere is a significant negative correlation between genome sizeof a species and its first month of flowering, but only in diploids,or in diploids and polyploids if only the basic genome size(2Cxlevel) is considered. We compared our results with thoseof nine other publications. Only 29 of 60 2C values publishedpreviously deviate less than 10% from our data, the others deviatemore strongly, from 0.44- to 1.44-fold. The more comprehensivedata sets of various authors were compared by correlation analysiswith our data. Positive and mostly significant correlationswere seen in all tests, but nevertheless the degree of incongruencebetween studies was unsatisfactory in view of the much betterintra-laboratory reproducibility of the present data. The presentwork highlights the need for generally agreed improvements instandardization and preparative procedures of cytophotometricgenome size determination.Copyright 1999 Annals of Botany Company Allium, genome size, Feulgen densitometry, flow cytometry, discontinuous DNA content variation, nucleotype hypothesis, flowering time, data reproducibility, correlation analysis.  相似文献   

13.
Genome size differences are usually attributed to the amplification and deletion of various repeated DNA sequences, including transposable elements (TEs). Because environmental changes may promote modifications in the amount of these repeated sequences, it has been postulated that when a species colonizes new environments this could be followed by an increase in its genome size. We tested this hypothesis by estimating the genome size of geographically distinct populations of Drosophila ananassae, Drosophila malerkotliana, Drosophila melanogaster, Drosophila simulans, Drosophila subobscura, and Zaprionus indianus, all of which have known colonization capacities. There was no strong statistical differences between continents for most species. However, we found that populations of D. melanogaster from east Africa have smaller genomes than more recent populations. For species in which colonization is a recent event, the differences between genome sizes do not thus seem to be related to colonization history. These findings suggest either that genome size is seldom modified in a significant way during colonization or that it takes time for genome size of invading species to change significantly.  相似文献   

14.
BACKGROUND AND AIMS: It has been proposed that having too much DNA may carry physiological consequences for plants. The strong correlation between DNA content, cell size and cell division rate could lead to predictable morphological variation in plants, including a negative relationship with leaf mass per unit area (LMA). In addition, the possible increased demand for resources in species with high DNA content may have downstream effects on maximal metabolic efficiency, including decreased metabolic rates. METHODS: Tests were made for genome size-dependent variation in LMA and metabolic rates (mass-based photosynthetic rate and dark respiration rate) using our own measurements and data from a plant functional trait database (Glopnet). These associations were tested using two metrics of genome size: bulk DNA amount (2C DNA) and monoploid genome size (1Cx DNA). The data were analysed using an evolutionary framework that included a regression analysis and independent contrasts using a phylogenetic tree with estimates of molecular diversification times. A contribution index for the LMA data set was also calculated to determine which divergences have the greatest influence on the relationship between genome size and LMA. KEY RESULTS AND CONCLUSIONS: A significant negative association was found between bulk DNA amount and LMA in angiosperms. This was primarily a result of influential divergences that may represent early shifts in growth form. However, divergences in bulk DNA amount were positively associated with divergences in LMA, suggesting that the relationship may be indirect and mediated through other traits directly related to genome size. There was a significant negative association between genome size and metabolic rates that was driven by a basal divergence between angiosperms and gymnosperms; no significant independent contrast results were found. Therefore, it is concluded that genome size-dependent constraints acting on metabolic efficiency may not exist within seed plants.  相似文献   

15.
To investigate genome size evolution, it is usually informative to compare closely related species that vary dramatically in genome size. A whole genome duplication (polyploidy) that occurred in rice (Oryza sativa) about 70 million years ago has been well documented based on current genome sequencing. The presence of three distinct duplicate blocks from the polyploidy, of which one duplicated segment in a block is intact (no sequencing gap) and less than half the length of its syntenic duplicate segment, provided an excellent opportunity for elucidating the causes of their size variation during the post-polyploid time. The results indicated that incongruent patterns (shrunken, balanced and inflated) of chromosomal size evolution occurred in the three duplicate blocks, spanning over 30 Mb among chromosomes 2, 3, 6, 7, and 10, with an average of 20.3% for each. DNA sequences of chromosomes 2 and 3 appeared to had become as short as about half of their initial sequence lengths, chromosomes 6 and 7 had remained basically balanced, and chromosome 10 had become dramatically enlarged (approximately 70%). The size difference between duplicate segments of rice was mainly caused by variations in non-repetitive DNA loss. Amplification of long terminal repeat retrotransposons also played an important role. Moreover, a relationship seems to exist between the chromosomal size differences and the nonhomologous combination in corresponding regions in the rice genome. These findings help shed light on the evolutionary mechanism of genomic sequence variation after polyploidy and genome size evolution.  相似文献   

16.
The lack of correlation between genome size and organismal complexity has long been a topic of great interest. Over the last decade it has become clear that transposable elements play a dominant role in genome size growth, and that most of the observed genome size variation in plants can be ascribed to differential accumulation of transposable elements, particularly long terminal repeat retrotransposons, which often massively proliferate over exceptionally short evolutionary time-scales. In the absence of one or more counterbalancing forces, Bennetzen and Kellogg previously suggested that growth via transposable element accumulation would create a “one-way ticket to genomic obesity”. Phylogenetic evidence, however, indicates that lineages may experience genomic downsizing, notwithstanding the relative paucity of experimental evidence on mechanisms capable of eliminating massive amounts of DNA. Thus, genome size evolution in plants may involve both feast and famine. Here we review recent insights into the molecular mechanisms and evolutionary dynamics of genome size evolution in plants. These include mechanisms that contribute to genome size expansion, i.e. polyploidy and transposable element proliferation, in addition to the counteracting forces that act to remove DNA, particularly intra-strand homologous recombination and illegitimate recombination. We argue that extant genome sizes reflect myriad competing forces of genomic expansion and contraction, but that current evidence pertaining to rates and amounts of DNA loss prove insufficient to overcome transposable element proliferation in most lineages. Accordingly, the directionality of plant genome size evolution in most cases is biased toward growth, with mechanisms of DNA loss acting to attenuate (but not reverse) the march toward obesity.  相似文献   

17.
18.
Mutation of BRCA2 causes familial early onset breast and ovarian cancer. BRCA2 has been suggested to be important for the maintenance of genome integrity and to have a role in DNA repair by homology- directed double-strand break (DSB) repair. By studying the repair of a specific induced chromosomal DSB we show that loss of Brca2 leads to a substantial increase in error-prone repair by homology-directed single-strand annealing and a reduction in DSB repair by conservative gene conversion. These data demonstrate that loss of Brca2 causes misrepair of chromosomal DSBs occurring between repeated sequences by stimulating use of an error-prone homologous recombination pathway. Furthermore, loss of Brca2 causes a large increase in genome-wide error-prone repair of both spontaneous DNA damage and mitomycin C-induced DNA cross-links at the expense of error-free repair by sister chromatid recombination. This provides insight into the mechanisms that induce genome instability in tumour cells lacking BRCA2.  相似文献   

19.
This study provides C-value (haploid nuclear DNA content) estimates for 31 species of ladybird beetles (representing 6 subfamilies and 8 tribes), the first such data for the family Coccinellidae. Despite their unparalleled diversity, the Coleoptera have been very poorly studied in terms of genome size variation, such that even this relatively modest sample of species makes the Coccinellidae the third best studied family of beetles, behind the Tenebrionidae and Chrysomelidae. The present study provides a comparison of patterns of genome size variation with these two relatively well-studied families. No correlation was found between genome size and body size in the ladybirds, in contrast to some other invertebrate groups but in keeping with findings for other beetle families. However, there is some indication that developmental time and/or feeding ecology is related to genome size in this group. Some phylogenetic patterns and possible associations with subgenomic features are also discussed.  相似文献   

20.
Evolution of genome size and DNA base composition in reptiles   总被引:2,自引:2,他引:0  
E. Olmo 《Genetica》1981,57(1):39-50
The evolution of genome size and base composition of DNA from various reptiles has been studied. DNA amount was measured cytophotometrically and GC concentration estimated by thermal denaturation. The Reptilia appear to be a fairly homogeneous group with respect to DNA quantity, although chelonians stand out because of their higher inter- and intrafamilial variability and DNA content. Quantitative DNA variations do not show a single evolutionary trend, but rather seem to have followed different patterns within each group.The differences in genome size between related species seem to be mainly the result of duplication or loss of DNA sequences characterized by a similar mean denaturation temperature. This agrees with observations of other authors that quantitative variations in reptiles are mainly due to differences in the amount of repetitive DNA.Several hypotheses on the significance of quantitative DNA variations in reptiles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号