首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guided tours: from precursor snoRNA to functional snoRNP.   总被引:35,自引:0,他引:35  
Small nucleolar RNAs (snoRNAs) use base pairing to guide modification of conserved nucleotides in functionally important regions of ribosomal RNA. The box C/D snoRNAs direct 2'-O-methylation and the box H/ACA snoRNAs direct pseudouridylation. Each snoRNA interacts with proteins, many of them newly identified. Progress in understanding how snoRNA sequences are stored within genomes, liberated from precursor molecules and targeted to the nucleolus has begun to elucidate each step in the biogenesis of these critical contributors to ribosome formation.  相似文献   

2.
We recently demonstrated that the plant amino acid, mimosine, is an extremely efficacious inhibitor of DNA replication in mammalian cells [P. A. Dijkwel and J. L. Hamlin (1992) Mol. Cell. Biol. 12, 3715-3722; P. J. Mosca et al. (1992) Mol. Cell. Biol. 12, 4375-4383]. Several of its properties further suggested that mimosine might target initiation at origins of replication, which would make it a unique and very useful inhibitor for studying the regulation of DNA synthesis. However, mimosine is known to chelate iron, a cofactor for ribonucleotide reductase. Thus, the possibility arose that mimosine functions in vivo simply by lowering intracellular deoxyribonucleotide pools. In the present study, we show that, in fact, it is possible to override mimosine inhibition in vivo by adding excess iron; however, copper, which is not a substitute for iron in ribonucleotide reductase, is equally effective. Evidence is presented that mimosine functions instead by binding to an intracellular protein. We show that radiolabeled mimosine can be specifically cross-linked to a 50 kDa polypeptide (termed p50) in vitro. Binding to p50 is virtually undetectable in CHO cells selected for resistance to 1 mM mimosine, arguing that p50 is the biologically relevant target. p50 is not associated with the cellular membrane fraction and, hence, is probably not a channel protein. Furthermore, the binding activity does not vary markedly as a function of cell cycle position, arguing that p50 is not a cyclin. Finally, both iron and copper are able to reverse the mimosine-p50 interaction in vitro, probably explaining why both metal ions are able to overcome mimosine's inhibitory effect on DNA synthesis in vivo.  相似文献   

3.
U3 small nucleolar RNA (snoRNA) is a member of the Box C/D family of snoRNAs which functions in ribosomal RNA processing. U3-55k is a protein that has been found to interact with U3 but not other members of the Box C/D snoRNA family. We have found that interaction of the U3-55k protein with U3 RNA in vivo is mediated by the conserved Box B/C motif which is unique to U3 snoRNA. Mutation of Box B and Box C, but not of other conserved sequence elements, disrupted interaction of U3-55k with U3 RNA. Furthermore, a fragment of U3 containing only these two conserved elements was bound by U3-55k in vivo. RNA binding assays performed in vitro indicate that Box C may be the primary determinant of the interaction. We have cloned the cDNA encoding the Xenopus laevis U3-55k protein and find strong homology to the human sequence, including six WD repeats. Deletion of WD repeats or sequences near the C-terminus of U3-55k resulted in loss of association with U3 RNA and also loss of localization of U3-55k to the nucleolus, suggesting that protein–protein interactions contribute to the localization and RNA binding of U3-55k in vivo.  相似文献   

4.
5.
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.  相似文献   

6.
Homologs of the Imp4 protein, a component specific to the eukaryotic U3 snoRNP complex, have been found in all archaeal genomes. The archaeal and eukaryotic Imp4 proteins that are related to four other protein families, the Imp4-like, the SSF1 homologs and two sets of hypothetical proteins, are characterized by the Imp4 signature pattern. These findings, together with the presence of other snoRNPs homologs in Archaea, provide evidence for similar RNA processing and folding in Eukarya and Archaea.  相似文献   

7.
8.
9.
The U3 snoRNA coding sequences from the genomic DNAs of Kluyveromyces delphensis and four variants of the Kluyveromyces marxianus species were cloned by PCR amplification. Nucleotide sequence analysis of the amplification products revealed a unique U3 snoRNA gene sequence in all the strains studied, except for K. marxianus var. fragilis. The K. marxianus U3 genes were intronless, whereas an intron similar to those of the Saccharomyces cerevisiae U3 genes was found in K. delphensis. Hence, U3 genes with and without intron are found in yeasts of the Saccharomycetoideae subfamily. The secondary structure of the K. delphensis pre-U3 snoRNA and of the K. marxianus mature snoRNAs were studied experimentally. They revealed a strong conservation in yeasts of (1) the architecture of U3 snoRNA introns, (2) the 5'-terminal domain of the mature snoRNA, and (3) the protein-anchoring regions of the U3 snoRNA 3' domain. In contrast, stem-loop structures 2, 3, and 4 of the 3' domain showed great variations in size, sequence, and structure. Using a genetic test, we show that, in spite of these variations, the Kluyveromyces U3 snoRNAs are functional in S. cerevisiae. We also show that S. cerevisiae U3A snoRNAs lacking the stem-loop structure 2 or 4 are functional. Hence, U3 snoRNA function can accommodate great variations of the RNA 3'-terminal domain.  相似文献   

10.
Interaction between actin filaments (AFs) and microtubules (MTs) has been reported in various plant cells, and the presence of a factor(s) connecting these two cytoskeletal networks has been suggested, but its molecular entity has not been elucidated yet. We obtained a fraction containing MT-binding polypeptides, which induced bundling of AFs and of MTs. A 190 kDa polypeptide which associated with AFs was selectively isolated from the fraction. This polypeptide was thought to have an ability to bind to both AFs and MTs. We raised a monoclonal antibody against the 190 kDa polypeptide. Immunostaining demonstrated the association of the 190 kDa polypeptide with AF bundles and with MT bundles formed in vitro. Immunocytochemical studies throughout the cell cycle revealed that the 190 kDa polypeptide was localized in the nucleus before nuclear envelope breakdown, and in the spindle and the phragmoplast during cell division. After the re-formation of the nuclear envelope, the 190 kDa polypeptide was sequestered to the daughter nuclei. Using the antibody, we succeeded in cloning a cDNA encoding the 190 kDa polypeptide.  相似文献   

11.
12.
The localization of a major nucleolar protein with a molecular weight of 100,000 has been followed during mitosis in Chinese hamster ovary CHO cells using specific antibodies to this protein and immunocytochemical techniques. The 100 kDa protein was visualized at discrete sites on metaphase chromosomes, corresponding to nucleolus organizer regions, and in large, immunostained nucleolar remnants that are discarded in the cytoplasm after nucleolar disintegration. After mitosis, the 100 kDa protein was shown to play an early role in nucleolar reformation. It was first detected in small deposits around the anaphase chromosomes. In telophase, the protein accumulated simultaneously in prenucleolar bodies and in the reforming nucleoli. The early presence of the 100 kDa protein in the telophase nucleus suggests that it is essential for the reestablishment of nucleolar function after mitosis. Thus this protein is present throughout the CHO cell cycle, an observation which supports the hypothesis that it plays a fundamental role in cell organization.  相似文献   

13.
Solubilized proteins of the plasma membrane of bovine adrenal medulla were fractionated on the basis of their affinity for secretory vesicles. The isolation procedure included preparation of a highly purified fraction of plasma membranes, its solubilization in detergent, and application to a column prepared from glutaraldehyde-fixed chromaffin granules. Using this technique, one major polypeptide (80% of the material bound) was isolated. This protein has been shown to originate from the plasma membrane and has no affinity for fixed bovine adrenal medullary mitochondria or lysosomes. It is eluted most effectively by low pH (3.0) and can be rebound and re-eluted from fixed secretory granules. In sodium dodecyl sulfate and beta-mercaptoethanol it has an apparent molecular weight of 51,000. In addition, two minor components, comprising about 20% of the material bound were detected having apparent molecular weights in sodium dodecyl sulfate of 14,000 and 62,000. It is suggested that such a molecule could function as a plasma membrane-located receptor for chromaffin granules during the secretory process.  相似文献   

14.
It has been known that one of the signal transduction mechanisms in Escherichia coli is mediated by cAMP which binds to the receptor protein (CAP), and that CAP complexed with cAMP facilitates gene expression by binding to the specific sequences. To identify a molecular mechanism in eukaryotes similar to a cAMP-mediated pathway in E. coli, the function of the CAP binding site of lac gene in E. coli and the protein(s) interacting with it were examined in a mammalian system. From transient expression studies of the fusion gene between the chloramphenicol acetyltransferase and lac genes, it was found that the lacCAP binding site could act as an enhancer activity on the SV40 promoter, and also as an additive enhancer activity to the SV40 enhancer in HeLa cells. However, the activity was not stimulated by cpt-cAMP (a highly stable analogue of cAMP) in HeLa cells, although it was induced in PC12 cells. These results suggest that a bacterial cAMP responsive element may function also in eukaryotes as a cis-acting element in a cell type dependent manner. Results from gel mobility shift assays showed that a protein(s) exists that specifically binds to the lacCAP binding site in eukaryotic nuclear extracts. As one of the proteins binding to the above site, we have identified a 130 kDa protein by using the Southwestern method. Although a function of the 130 kDa protein has not yet been understood, there is a possibility that the 130 kDa protein may play a role in the regulation of cAMP-dependent gene expression.  相似文献   

15.
The U3 snoRNA is required for 18S rRNA processing and small subunit ribosome formation in eukaryotes. Different from other box C/D snoRNAs, U3 contains an extra 5′ domain that pairs with pre-rRNA and a unique B/C motif essential for recruitment of the U3-specific Rrp9 protein. Here, we analyze the structure and function of Rrp9 with crystallographic, biochemical, and cellular approaches. Rrp9 is composed of a WD repeat domain and an N-terminal region. The crystal structures of the WD domain of yeast Rrp9 and its human ortholog U3-55K were determined, revealing a typical seven-bladed propeller fold. Several conserved surface patches on the WD domain were identified, and their function in RNP assembly and yeast growth were analyzed by mutagenesis. Prior association of Snu13 with the B/C motif was found to enhance the specific binding of the WD domain. We show that a conserved 7bc loop is crucial for specific recognition of U3, nucleolar localization of Rrp9, and yeast growth. In addition, we show that the N-terminal region of Rrp9 contains a bipartite nuclear localization signal that is dispensable for nucleolar localization. Our results provide insight into the functional sites of Rrp9.  相似文献   

16.
C J Houwing  E M Jaspars 《Biochemistry》1978,17(14):2927-2933
All four RNAs of alfalfa mosaic virus contain a limited number of sites with a high affinity for coat protein [Van Boxsel, J. A. M. (1976), Ph.D. Thesis, University of Leiden]. In order to localize these sites in the viral RNAs, RNA 4 Tthe subgenomic messenger for coat protein) was subjected to a very mild digestion with ribonucleast T1. The ten major fragments, apparently resulting from five preferential hits, were separated and tested for messenger activity in a wheat germ cell-free system, as well as for the capacity to withdraw coat protein from intact particles. Fragments which stimulated amino acid incorporation were assumed to contain the 5 terminus. Strong evidence was obtained for the location of sites with a high affinity for coat protein near the 3' terminus. The smallest fragment which has the 3'-terminal cytosine comprises only 10% of the length of intact RNA 4 but still possesses these sites. Evidence is presented that the complete coat protein cistron is in the complementing 90% fragment. Possibly, the high-affinity sites are entirely located in the 3'-terminal extracistronic part of RNA 4. They will have the same position in RNA 3 and, possibly, also in the other parts of the genome of alfalfa mosaic virus. The need of this genome for coat protein in order to become infectious may therefore find its explanation in the fact that a conformational change at the 3' ends of the genome parts brought about by the coat protein is required for recognition by the viral replicase.  相似文献   

17.
The major palmitoylated human erythrocyte membrane protein has an M(r) of 55,000. It is distinct from the glucose transporter and is not derived from band 3 or ankyrin. It resists salt extraction suggesting a high affinity for the membrane. Pulse chase experiments demonstrate that palmitoylation is a dynamic process, and it may therefore have regulatory significance in membrane protein-protein or protein-lipid interaction. Slower dynamics of palmitoylation in erythrocytes from patients suffering from chronic myelogenous leukemia, which are less stable than normal erythrocytes, strengthen this view.  相似文献   

18.
Acetaminophen is metabolized by cytochrome P450 to a reactive metabolite that covalently binds to proteins and this binding correlates with the hepatotoxicity. The major protein adduct was previously reported to be a 55 kDa protein that was detected on Western blots using antisera specific for 3-(cystein-S-yl)acetaminophen. In this study, the 55 kDa protein was isolated using a combination of ion exchange fast flow chromatography, hydroxyapatite HPLC and anion exchange HPLC. Amino acid sequences of 8 internal peptides from a trypsin digestion of the 55 kDa protein were found to have 97% homology with the deduced amino acid sequence from a cDNA that corresponds to a 56 kDa selenium binding protein. This is the first report of a specific protein to which a metabolite of acetaminophen covalently binds.  相似文献   

19.
The mouse ribosomal protein S3a-encoding gene (mRPS3a) was cloned and sequenced in this study. mRPS3a shares identical exon/intron structure with its human counterpart. Both genes are split to six exons and exhibit remarkable conservation of the promoter region (68.8% identity in the 250 bp upstream of cap site) and coding region (the proteins differ in two amino acids). mRPS3a displays many features common to other r-protein genes, including the CpG-island at 5′-end of the gene, cap site within an oligopyrimidine tract and no consensus TATA or CAAT boxes. However, mRPS3a represents a rare subclass of r-protein genes that possess a long coding sequence in the first exon. Comparison of human and mouse S3a genes revealed sequence fragments with striking similarity within introns 3 and 4. Here we demonstrate that these sequences encode for a novel small nucleolar RNA (snoRNA) designated U73. U73 contains C, D and D′ boxes and a 12-nucleotide antisense complementarity to the 28S ribosomal RNA. These features place U73 into the family of intron-encoded antisense snoRNAs that guide site-specific 2′-O-ribose methylation of pre-rRNA. We propose that U73 is involved in methylation of the G1739 residue of the human 28S rRNA. In addition, we present the mapping of human ribosomal protein S3a gene (hRPS3a) and internally nested U73 gene to the human chromosome 4q31.2–3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号