首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have focused on the anti-tumor activity of capsaicin. However, the potential effects of capsaicin in osteosarcoma cells and the underlying mechanisms are not fully understood. In the current study, we observed that capsaicin-induced growth inhibition and apoptosis in cultured osteosarcoma cells (U2OS and MG63), which were associated with a significant AMP-activated protein kinase (AMPK) activation. AMPK inhibition by compound C or RNA interference suppressed capsaicin-induced cytotoxicity, while AMPK activators (AICAR and A769662) promoted osteosarcoma cell death. For the mechanism study, we found that AMPK activation was required for capsaicin-induced mTORC1 (mTOR complex 1) inhibition, B cell lymphoma 2 (Bcl-2) downregulation and Bax upregulation in MG63 cells. Capsaicin administration induced p53 activation, mitochondrial translocation and Bcl-2 killer association, such effects were dependent on AMPK activation. Interestingly, we observed a significant pro-apoptotic c-Jun NH2-terminal kinases activation by capsaicin in MG63 cells, which appeared to be AMPK independent. In conclusion, capsaicin possessed strong efficacy against human osteosarcoma cells. Molecular studies revealed that capsaicin activated AMPK-dependent and AMPK-independent signalings to mediate cell apoptosis. The results of this study should have significant translational relevance in managing this deadly malignancy.  相似文献   

2.
摘要 目的:研究白藜芦醇(RES)通过蛋白酪氨酸激酶2/信号转导子与激活子3(JAK2/STAT3)信号通路对人骨肉瘤体外细胞株MG-63细胞凋亡、侵袭和迁移的影响。方法:体外培养MG-63细胞,以不同浓度的RES作用于MG-63细胞。Annexin V-FITC/PI双染流式细胞术检测不同时间和不同浓度的RES对MG-63细胞凋亡的影响。划痕实验和Transwell实验检测不同时间和不同浓度的RES对MG-63细胞侵袭和迁移能力的影响。免疫印迹实验检测不同时间和不同浓度的RES对MG-63细胞磷酸化蛋白酪氨酸激酶2(p-JAK2)、磷酸化信号转导子与激活子3(p-STAT3)、凋亡相关蛋白B淋巴细胞瘤-2(Bcl-2)、Bcl-2家族促凋亡蛋白(Bax)及基质金属蛋白酶(MMP)-2、MMP-9表达的影响。结果:RES浓度越高,时间越久,MG-63细胞凋亡率越高(P<0.05)。RES浓度越高,MG-63细胞迁移和侵袭能力越弱(P<0.05)。RES处理MG-63细胞后其p-JAK2、p-STAT3、Bcl-2以及MMP-2、MMP-9的表达明显降低,而Bax蛋白表达明显升高,且p-JAK2、p-STAT3、Bax、Bcl-2以及MMP-2、MMP-9的表达水平变化具有RES浓度依赖性(P<0.05)。结论:RES可能通过调控JAK2/STAT3信号通路促使人骨肉瘤MG-63细胞凋亡,并抑制MG-63细胞侵袭和迁移。  相似文献   

3.
目的:研究不同浓度白花丹素对骨肉瘤细胞MG-63凋亡迁移、基质金属蛋白酶(MMP)及Bcl-2、Bax、Ezrin蛋白表达的影响。方法:取对数生长期的骨肉瘤MG-63细胞,传代培养成细胞株后以随机法分成对照组、低剂量组、中剂量组、高剂量组。其中对照组加入到0.1%浓度的DMSO完全培养基中培养,低剂量组、中剂量组、高剂量组分别加入到浓度为5、10、20μmol/L的白花丹素的有关培养基中培养。培养24 h后,采用Transwell法检测MG-63细胞迁移率、Hoechst33342染色法检测MG-63细胞凋亡率、Western blot法检测四组MG-63细胞的MMP-2、MMP-9、Bcl-2、Bax、Ezrin蛋白表达水平。结果:培养24 h后,低剂量组、中剂量组、高剂量组的骨肉瘤细胞MG-63凋亡率及Bax蛋白表达水平均较对照组升高(P<0.05),且随白花丹素浓度的增加而升高(P<0.05);骨肉瘤细胞MG-63的细胞迁移率、MMP-2、MMP-9、Bcl-2及Ezrin蛋白表达水平较对照组降低(P<0.05),且随白花丹素浓度的增加而降低(P<0.05)。结论:白花丹素对骨肉瘤细胞MG-63凋亡的促进作用以及迁移的抑制作用明显,其作用机制可能与抑制骨肉瘤细胞MG-63中的MMP-2、MMP-9、Bcl-2、Ezrin蛋白表达及促进Bax蛋白表达有关,且浓度越高,抑制或促进作用越明显。  相似文献   

4.
The overexpression of the type 1 insulin-like growth factor receptor (IGF-1R) has been reported to be associated with malignant transformation, tumor development and chemo- or radioresistance of tumor cells. Previously, we have reported that inhibition of IGF-1R could reverse the radioresistance of human osteosarcoma cells. However, whether inhibition of IGF-1R could enhance chemosensitivity of ostesosarcoma cells is unclear. In this study, lentivirus-mediated shRNA was employed to downregulate endogenous IGF-1R expression to study the function of IGF-1R in chemoresistance of osteosarcoma cells. Results showed that lentivirus-mediated shRNA targeting IGF-1R combined with chemotherapy (CDDP or DTX) could lead to growth suppression of osteosarcoma cells not only in vitro but also in vivo. Moreover, inhibition of IGF-1R gene combined with chemotherapy also synergistically enhanced Caspase-3-mediated apoptosis of osteosarcoma cells. The synergistical enhancement of apoptosis might be associated with downregulation of Bcl-2 and upregulation of Bax in osteosarcoma cells induced by IGF-1R inhibition. Therefore, the overexpression of IGF-1R gene might play important roles in chemoresistance of osteosarcoma cells, and lentivirus-mediated RNAi targeting IGF-1R would be an attractive anti-cancer strategy to chemosensitization of osteosarcoma cell.  相似文献   

5.
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. The clinical outcome for osteosarcoma remains discouraging despite aggressive surgery and intensive radiotherapy and chemotherapy regimens. Thus, novel therapeutic approaches are needed. Previously, we have shown that inorganic phosphate (Pi) inhibits proliferation and aggressiveness of human osteosarcoma U2OS cells identifying adenylate cyclase, beta3 integrin, Rap1, ERK1/2 as proteins whose expression and function are relevantly affected in response to Pi. In this study, we investigated whether Pi could affect chemosensitivity of osteosarcoma cells and the underlying molecular mechanisms. Here, we report that Pi inhibits proliferation of p53‐wild type U2OS cells (and not of p53‐null Saos and p53‐mutant MG63 cells) by slowing‐down cell cycle progression, without apoptosis occurrence. Interestingly, we found that Pi strongly enhances doxorubicin‐induced cytotoxicity in U2OS, and not in Saos and MG63 cells, by apoptosis induction, as revealed by a marked increase of sub‐G1 population, Bcl‐2 downregulation, caspase‐3 activation, and PARP cleavage. Remarkably, Pi/doxorubicin combination‐induced cytotoxicity was accompanied by an increase of p53 protein levels and of p53 target genes mdm2, p21 and Bax, and was significantly reduced by the p53 inhibitor pifithrine‐alpha. Moreover, the doxorubicin‐induced cytotoxicity was associated with ERK1/2 pathway inhibition in response to Pi. Altogether, our data enforce the evidence of Pi as a novel signaling molecule capable of inhibiting ERK pathway and inducing sensitization to doxorubicin of osteosarcoma cells by p53‐dependent apoptosis, implying that targeting Pi levels might represent a rational strategy for improving osteosarcoma therapy. J. Cell. Physiol. 228: 198–206, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Yan XB  Yang DS  Gao X  Feng J  Shi ZL  Ye Z 《Cell biology international》2007,31(10):1136-1143
Many researchers have reported that proteasome inhibitors could induce apoptosis in a variety of cancer cells, such as breast cancer cell, lung cancer cell, and lymphoma cell. However, the effect of proteasome inhibitors on osteocsarcoma cells and the mechanisms are seldom studied. In this study, we found proteasome inhibitor MG132 was an effective inducer of apoptosis in human osteosarcoma MG-63 cells. On normal human diploid fibroblast cells, MG132 did not show any apoptosis-inducing effects. Apoptotic changes such as DNA fragment and apoptotic body were observed in MG132-treated cells and MG132 mostly caused MG-63 cell arrest at G(2)-M-phase by cell cycle analysis. Increased activation of caspase-8, accumulation of p27(Kip1), and an increased ratio of Bax:Bcl-2 were detected by RT-PCR and Western blot analysis. Activation of caspase-3 and caspase-9 were not observed. This suggests that the apoptosis induced by MG132 in MG63 cells is caspase-8 dependent, p27 and bcl-2 family related.  相似文献   

8.
Anti-apoptotic Bcl-2 family proteins have been reported to play an important role in apoptotic cell death of human malignancies. The aim of this study was to delineate the mechanism of anti-apoptotic Bcl-2 family proteins in pancreatic cancer (PaCa) cell survival. We first analyzed the endogenous expression and subcellular localization of anti-apoptotic Bcl-2 family proteins in six PaCa cell lines by Western blot. To delineate the functional role of Bcl-2 family proteins, siRNA-mediated knock-down of protein expression was used. Apoptosis was measured by Cell Death ELISA and Hoechst 33258 staining. In the results, the expression of anti-apoptotic Bcl-2 family proteins varied between PaCa cell lines. Mcl-1 knock-down resulted in marked cleavage of PARP and induction of apoptosis. Down-regulation of Bcl-2 or Bcl-xL had a much weaker effect. Simultaneous knock-down of Bcl-xL and Mcl-1 strongly induced apoptosis, but simultaneous knock-down of Bcl-xL/Bcl-2 or Mcl-1/Bcl-2 had no additive effect. The apoptosis-inducing effect of simultaneous knock-down of Bcl-xL and Mcl-1 was associated with translocation of Bax from the cytosol to the mitochondrial membrane, cytochrome c release, and caspase activation. These results demonstrated that Bcl-xL and Mcl-1 play an important role in pancreatic cancer cell survival. Targeting both Bcl-xL and Mcl-1 may be an intriguing therapeutic strategy in PaCa.  相似文献   

9.

Objectives

To investigate the roles of miR-149 in the progression of human osteosarcoma (OS).

Results

miR-149 level was upregulated in tissues from OS patients more than in normal subjects. Cell proliferation and apoptosis assays revealed that miR-149 increased cell proliferation and inhibited cell apoptosis in OS cell line (MG63). An increase of Bcl-2 gene expression and a decrease of cleaved-caspase-3, and cleaved-PARP expression were observed in MG63 cells with transfection of miR-149. Additionally, bone morphogenetic protein 9 (BMP9) was identified as a target of miR-149 in MG63 cells, and BMP9 expression was negatively correlated with miR149 level in OS clinical samples. Co-overexpression of BMP9 with miR-149 in MG63 cells prohibited miR-149-mediated promotive effects on OS progression. Importantly, overexpression of miR-149 conferred chemoresistance in MG63 cells.

Conclusions

miR-149 promotes OS progression via targeting BMP9.
  相似文献   

10.
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines—U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma.  相似文献   

11.
Human cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1) was identified as a novel suppressor of Bcl-2-associated X protein (Bax)-mediated cell death using yeast-based functional screening of a mammalian cDNA library. The overexpression of COX6A1 significantly suppressed Bax- and N-(4-hydroxyphenyl)retinamide (4-HPR)-induced apoptosis in yeast and human glioblastoma-derived U373MG cells, respectively. The generation of reactive oxygen species (ROS) in response to Bax or 4-HPR was inhibited in yeast and U373MG cells that expressed COX6A1, indicating that COX6A1 exerts a protective effect against ROS-induced cell damage. 4-HPR-induced mitochondrial translocation of Bax, release of mitochondrial cytochrome c, and activation of caspase-3 were markedly attenuated in U373MG cells that stably expressed COX6A1. Our results demonstrate that yeast-based functional screening of human genes for inhibitors of Bax-sensitivity in yeast identified a protein that not only suppresses the toxicity of Bax in yeast, but also has a potential role in protecting mammalian cells from 4-HPR-induced apoptosis.  相似文献   

12.
目的:观察蛇床子素(osthole)对人骨肉瘤细胞SAOS-2增殖和凋亡的影响及潜在的调控机制。方法:采用MTT法、TUNEL染色技术和流式细胞术检测不同浓度蛇床子素对骨肉瘤细胞凋亡的影响;Western blot检测蛇床子素对骨肉瘤细胞中与细胞凋亡密切相关的蛋白(Bax、Bcl-2)的变化。结果:蛇床子素作用于SAOS-2细胞后,MTT结果显示SAOS-2细胞的活力受到明显抑制,且与蛇床子素浓度和时间相关;Western blot结果显示细胞中的促凋亡蛋白Bax表达上调,抗凋亡蛋白Bcl-2表达明显减弱,且呈剂量依赖性。结论:蛇床子素可显著抑制人骨肉瘤细胞的增殖且促进其凋亡的作用,可能与上调凋亡蛋白Bax和下调抗凋亡蛋白Bcl-2的表达有关。  相似文献   

13.
14.
The abnormal expression of long noncoding RNAs (lncRNAs) plays an important role in the regulation of human cancer progression and drug resistance. The lncRNA OPI5-AS1 is a crucial regulator in some cancers; however, its role in cisplatin resistance of osteosarcoma remains unclear. We found that OIP5-AS1 was significantly upregulated in cisplatin-resistant (CR) osteosarcoma cells MG63-CR and SaOS2-CR compared with the corresponding parental cells. OIP5-AS1 silencing suppressed cell growth in vitro and in vivo, and promoted apoptosis of MG63-CR and SaOS2-CR cells, indicating that knockdown of OIP5-AS1 significantly decreased cisplatin resistance in MG63-CR and SaOS2-CR cells. This conclusion was supported by the decreased expression of the drug resistance-related factors multidrug resistance-associated protein 1 (MRP1) and P-glycoprotein (P-gp) upon OIP5-AS1 silencing. In addition, OIP5-AS1 downregulation suppressed the PI3K/AKT/mTOR signaling pathway. Importantly, we demonstrated that OIP5-AS1 functions as a competing endogenous RNA of miR-340-5p and regulates the expression of lysophosphatidic acid acyltransferase (LPAATβ), which is a target of miR-340-5p. Moreover, downregulation of miR-340-5p partly reversed the inhibitory effect of OIP5-AS1 knockdown on the PI3K/AKT/mTOR pathway and therefore counteracted cisplatin resistance in MG63-CR and SaOS2-CR cells. In conclusion, OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. Our results contribute to a better understanding of the function and mechanism of OIP5-AS1 in osteosarcoma cisplatin resistance.  相似文献   

15.
Osteosarcoma is the most common primary malignant bone tumor. Although cisplatin is the primary chemotherapy used in osteosarcoma treatment, the cisplatin resistance remains a big challenge for improving overall survival. The store-operated calcium (Ca2+) entry (SOCE) and its major mediator Stim1 have been shown to be implicated in a number of pathological processes typical for cancer. In this study, we showed that Stim1 expression was significantly increased in chemo-resistant osteosarcoma tissues compared with chemo-sensitivity tissues. Patients with Sitm1 expression exhibited poorer overall survival than Stim1-negative patients. Moreover, un-regulation of Stim1 expression and SOCE were also observed in cisplatin-resistant MG63/CDDP cells compared with their parental cells. Cisplatin treatment obviously reduced Stim1 expression and SOCE in cisplatin-sensitivity MG63 cells, but had no effects on MG63/CDDP cells. In addition, cisplatin resulted in a more pronounced increase of endoplasmic reticulum (ER) stress in MG63 cells than in their resistant variants, which was evidenced by the activation of molecular markers of ER stress, GRP78, CHOP and ATF4. Knockdown of Stim1 using siRNA remarkably enhanced cisplatin-induced apoptosis and ER stress in MG63/CDDP cells, thereby sensitizing cancer cells to cisplatin. On the other hand, overexpression of Stim1 markedly reversed apoptosis and ER stress following cisplatin treatment. Taken together, these results demonstrate that Stim1 as well as Ca2+ entry contributes cisplatin resistance via inhibition of ER stress-mediated apoptosis, and provide important clues to the mechanisms involved in cisplatin resistance for osteosarcoma treatment. Stim1 represents as a target of cisplatin and blockade of Stim1-mediated Ca2+ entry may be a useful strategy to improve the efficacy of cisplatin to treat osteosarcoma.  相似文献   

16.
Xylarianaphthol-1, a novel dinaphthofuran derivative, was isolated from a marine sponge-derived fungus of order Xylariales on the guidance of a bioassay using the transfected human osteosarcoma MG63 cells (MG63luc+). The chemical structure of xylarianaphthol-1 was determined from the 1H and 13C NMR analysis and was further confirmed by the total synthesis. Xylarianaphthol-1 activated p21 promoter stably transfected in MG63 cells dose-dependently. Expression of p21 protein in the wild-type MG63 cells was also increased by xylarianaphthol-1 treatment.  相似文献   

17.
姜黄素(curcumin)诱导处理的人成骨肉瘤MG-63细胞,在光镜和电镜观察细胞凋亡的基础上,对hnRNP A2/B1在核基质中存在、分布及其与凋亡相关基因产物在MG-63细胞中的共定位关系进行了研究.经姜黄素处理后,细胞出现染色质凝聚、细胞核固缩、凋亡小体等典型的细胞凋亡形态特征;双向凝胶电泳和质谱鉴定结果显示,hnRNP A2/B1存在于MG-63细胞核基质蛋白组分中,在姜黄素处理后细胞核基质蛋白中表达下调.蛋白质印迹杂交结果,证实hnRNP A2/B1在姜黄素处理前后的MG-63细胞核基质蛋白中的存在及其表达下调变化.免疫荧光显微镜观察显示,hnRNP A2/B1定位于MG-63细胞核基质纤维上,经姜黄素处理后出现分布位置与表达水平变化.激光扫描共聚焦显微镜的观察结果显示,hnRNP A2/B1在MG-63细胞凋亡过程中与Bax、Bcl-2、Fas和p53等基因产物具有共定位关系,且其共定位区域发生了变化.研究结果证实了hnRNP A2/B1定位于核基质纤维上,是一种核基质蛋白,在姜黄素诱导人成骨肉瘤MG-63凋亡过程中的表达与分布变化及其与凋亡相关基因的关系显然对MG-63细胞凋亡具有重要影响,这为深入揭示肿瘤细胞凋亡的机制提供了重要科学依据和深入探索的新方向.  相似文献   

18.
19.
20.
Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号