首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the mitochondria ubiquitous nature many of their components display divergences in their expression profile across different tissues. Using the bioinformatics-approach of guilt by association (GBA) we exploited these variations to predict the function of two so far poorly annotated genes: Coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) and glioblastoma amplified sequence (GBAS). We predicted both genes to be involved in oxidative phosphorylation. Through in vitro experiments using gene-knockdown we could indeed confirm this and furthermore we asserted CHCHD10 to play a role in complex IV activity.  相似文献   

2.
The synthesis of a 70 000 dalton-heat shock protein (hsp70) is one of several heat shock proteins induced in HeLa cells during the incubation in medium containing zinc sulphate. The synthesis of hsp70 was increased in the presence of 200 M zinc sulphate and above, but not at 100 M zinc sulphate. On the other hand, the synthesis of metallothionein was activated in the presence of 100 M zinc sulphate and above. Uptake of zinc into the cells depended on the concentration of zinc sulphate in the medium. The separation of intracellular zinc into three fractions by gel filtration chromatography; high molecular, metallothionein, and low molecular fractions, showed that zinc in the low molecular weight and metallothionein fractions was elevated in the presence of 100 M zinc sulphate in the medium, whereas increase in the zinc content of the high molecular weight fraction occurred at 200 M zinc sulphate and above. Inhibition of cell growth and cellular protein synthesis was also observed at 200 M zinc sulphate and above, but not at 100 M. From these findings, since the induction of hsp70 synthesis and inhibition of cell growth occurred concomitantly with the increase of zinc in the high and low molecular weight fractions, hsp70 seemed not to function in the detoxification of zinc, but it may participate in the repair of zinc-induced damage.  相似文献   

3.
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.  相似文献   

4.
The members of the 70 kDa-heat shock proteins (HSP70) family play numerous fundamental functions in the cell such as promoting the assembly of multimeric complexes or helping the correct folding of nascent proteins to take place. In numerous previous studies we demonstrated that Hsp70 and its constitutive isoform Hsc70 are endowed of a GlcNAc-binding activity. The molecular modeling of the substrate binding domain of Hsc70 and in silico docking experiments using Ser/Thr-O-GlcNAc motifs allowed to define the potential carbohydrate-recognition region and to point out the crucial position of Arg469 as an amino-acid directly interacting with the sugar moiety. We cloned a flagged Hsc70 in a pCMV.SPORT6 vector and we showed that the mutation R469A decreased the GlcNAc-binding property of the chaperone of around 70%. This is the first work reporting the localization of the GlcNAc-binding domain of a member of the HSP70 family.  相似文献   

5.
We investigated the role of recombinant Toxoplasma gondii heat shock protein (rT.g.HSP) 70-full length, rT.g.HSP70-NH2-terminal region, or rT.g.HSP70-carboxy-terminal region in prophylactic immunity in C57BL/6 mice perorally infected with Fukaya cysts of T. gondii. At 3, 4, 5, and 6 weeks after infection, the number of T. gondii in the brain tissue of each mouse was measured by quantitative competitive-polymerase chain reaction (QC-PCR) targeting the surface antigen (SAG) 1 gene. Immunization with rT.g.HSP70-full length or r.T.g.HSP70-carboxy-terminal region increased the number of T. gondii in the brain tissue after T. gondii infection, whereas immunization with rT.g.HSP70-NH2-terminal region did not. These results suggest that T.g.HSP70-carboxy-terminal region as well as T.g.HSP70-full length may induce deleterious effects on the protective immunity of mice infected with a cyst-forming T. gondii strain, Fukaya.  相似文献   

6.
Copper oxide nanoparticles (CuO NPs) are increasingly used in various applications. Recent studies suggest that oxidative stress may be the cause of the cytotoxicity of CuO NPs in mammalian cells. However, little is known about the genotoxicity of CuO NPs following exposure to human cells. This study was undertaken to investigate CuO NPs induced genotoxic response through p53 pathway in human pulmonary epithelial cells (A549). In addition, cytotoxicity and oxidative stress markers were also assessed. Results showed that cell viability was reduced by CuO NPs and degree of reduction was dose dependent. CuO NPs were also found to induce oxidative stress in dose-dependent manner indicated by depletion of glutathione and induction of lipid peroxidation, catalase and superoxide dismutase. The expression of Hsp70, the first tier biomarker of cellular damage was induced by CuO NPs. Further, CuO NPs up-regulated the cell cycle checkpoint protein p53 and DNA damage repair proteins Rad51 and MSH2 expression. These results demonstrate that CuO NPs possess a genotoxic potential in A549 cells which may be mediated through oxidative stress. Our short-term exposure study of high level induction of genotoxic response of CuO NPs will need to be further investigated to determine whether long-term exposure consequences may exist for CuO NPs application.  相似文献   

7.
Hypoxia occurs within adipose tissues as a result of adipocyte hypertrophy and is associated with adipocyte dysfunction in obesity. Here, we examined whether hypoxia affects the characteristics of adipocyte-derived exosomes. Exosomes are nanovesicles secreted from most cell types as an information carrier between donor and recipient cells, containing a variety of proteins as well as genetic materials. Cultured differentiated 3T3-L1 adipocytes were exposed to hypoxic conditions and the protein content of the exosomes produced from these cells was compared by quantitative proteomic analysis. A total of 231 proteins were identified in the adipocyte-derived exosomes. Some of these proteins showed altered expression levels under hypoxic conditions. These results were confirmed by immunoblot analysis. Especially, hypoxic adipocyte-released exosomes were enriched in enzymes related to de novo lipogenesis such as acetyl-CoA carboxylase, glucose-6-phosphate dehydrogenase, and fatty acid synthase (FASN). The total amount of proteins secreted from exosomes increased by 3–4-fold under hypoxic conditions. Moreover, hypoxia-derived exosomes promoted lipid accumulation in recipient 3T3-L1 adipocytes, compared with those produced under normoxic conditions. FASN levels were increased in undifferentiated 3T3-L1 cells treated with FASN-containing hypoxic adipocytes-derived exosomes. This is a study to characterize the proteomic profiles of adipocyte-derived exosomes. Exosomal proteins derived from hypoxic adipocytes may affect lipogenic activity in neighboring preadipocytes and adipocytes.  相似文献   

8.
ZR proteins belong to a phylogenetically conserved family of small zinc-ribbon proteins in plastids and mitochondria of higher plants. The function of these proteins is so far unclear. The mitochondrial proteins share sequence similarities with mitochondrial Hsp70 escort proteins (HEP) from Saccharomyces cerevisiae (HEP1) and human. Expression of the mitochondrial ZR protein from Arabidopsis, ZR3, rescued a hep1 knockout mutant from yeast. Accordingly, ZR3 was found to physically interact with mitochondrial Hsp70 from Arabidopsis. Our findings support the idea that mitochondrial and plastidic ZR proteins from higher plants are orthologs of HEP proteins.

Structured summary of protein interactions

ZR3physically interacts with mtHSC70-2 by pull down (View interaction)ZR3physically interacts with mtHSC70-1 by pull down (View interaction)  相似文献   

9.
Polysulfide is a bound sulfur species derived from endogenous H2S. When mouse neuroblastoma, Neuro2A cells were exposed to tert-butyl hydroperoxide after treatment with polysulfide, a significant decline in cell toxicity was observed. Rapid uptake of polysulfides induced translocation of Nrf2 into the nucleus, resulting in acceleration of GSH synthesis and HO-1 expression. We demonstrated that polysulfide reversibly modified Keap1 to form oxidized dimers and induced the translocation of Nrf2. Moreover, polysulfide treatment accelerated Akt phosphorylation, which is a known pathway of Nrf2 phosphorylation. Thus, polysulfide may mediate the activation of Nrf2 signaling, thereby exerting protective effects against oxidative damage in Neuro2A cells.  相似文献   

10.
Peroxiredoxin 6 (Prdx6) is a bifunctional enzyme with peroxidase and phospholipase A(2) (PLA(2)) activities. Although the cellular function of the peroxidase of Prdx6 has been well elucidated, the function of the PLA(2) of Prdx6 is largely unknown. Here, we report a novel function for the PLA(2) in regulating TNF-induced apoptosis through arachidonic acid (AA) release and interleukin-1β (IL-1β) production. Prdx6 knockdown (Prdx6(KD)) in human bronchial epithelial cells (BEAS2B) shows severe decreases of peroxidase and PLA(2) activities. Surprisingly, Prdx6(KD) cells are markedly resistant to apoptosis induced by TNF-α in the presence of cycloheximide, but are highly sensitive to hydrogen peroxide-induced apoptosis. Furthermore, the release of AA and the production of IL-1β induced by proinflammatory stimuli, such as TNF-α, LPS, and poly I/C, are severely decreased in Prdx6(KD) cells. More interestingly, the restoration of Prdx6 expression with wild-type Prdx6, but not PLA(2)-mutant Prdx6 (S32A), in Prdx6(KD) cells dramatically induces the recovery of TNF-induced apoptosis, AA release, and IL-1β production, indicating specific roles for the PLA(2) activity of Prdx6. Our results provide new insights into the distinct roles of bifunctional Prdx6 with peroxidase and PLA(2) activities in oxidative stress-induced and TNF-induced apoptosis, respectively.  相似文献   

11.
The present work describes a two-stage approach to analyzing combustion-generated samples for their potential to produce oxidant stress. This approach is illustrated with the two commonly encountered transition metals, copper and iron. First, their abilities to generate hydroxyl radical were measured in a cell-free, phosphate-buffered saline solution containing ascorbate and/or citrate. Second, their abilities to induce heme oxygenase-1 in cultured human epidermal keratinocytes were assessed in cell culture. Combustion-generated copper oxide nanoparticles were active in both assays and were found to be soluble in culture medium. Depletion of glutathione in the cells or loading the cells with ascorbate greatly increased heme oxygenase-1 induction in the presence of copper. By contrast, iron oxide nanoparticles were active in the phosphate-buffered saline but not in cell culture, and they aggregated in culture medium. Soluble salts of copper and iron exhibited the same contrast in activities as the respective combustion-generated particles. The results suggest that the capability of combustion-generated environmental samples to produce oxidant stress can be screened effectively in a two step process, first in phosphate-buffered saline with ascorbate and subsequently in epithelial cell culture for those exhibiting activity initially. The results also point to an unanticipated interaction in cells of oxidant stress-generating metals with an antioxidant (ascorbate) that is usually missing in culture medium formulations. Thus, ascorbate supplementation of cultured human cells is likely to improve their ability to model the in vivo effects of particulate matter containing copper and other redox-active metals.  相似文献   

12.
Compensation refers to an increase in cell size when the cell number is significantly decreased due to the mutation or gain of function of a gene that negatively affects the cell cycle. Given the importance of coordinated growth during organogenesis in both animal and plant systems, compensation is important to understand the mechanism of size regulation. In leaves, cell division precedes cell differentiation (which involves cell expansion); therefore, a decrease in cell number triggers enhanced cell expansion (compensated cell expansion; hereafter, CCE). Functional analyses of genes for which a loss or gain of function triggers compensation have increased our understanding of the molecular mechanisms underlying the decrease in cell number. Nevertheless, the mechanisms that induce enhanced cell expansion (the link between cell cycling and expansion), as well as the cellular machinery mediating CCE, have not been characterized. We recently characterized an important pathway involved in cell enlargement in KRP2-overexpressing plants. Here, we discuss the potential role of plant KRPs in triggering enlargement in cells with meristematic features.  相似文献   

13.
BackgroundLong QT syndromes (LQTS) are characterized by prolonged QTc interval on electrocardiogram (ECG) and manifest with syncope, seizures or sudden cardiac death. Long QT 1–3 constitute about 75% of all inherited LQTS. We classified a cohort of Indian patients for the common LQTS based on T wave morphology and triggering factors to prioritize the gene to be tested. We sought to identify the causative mutations and mutation spectrum, perform genotype-phenotype correlation and screen family members.MethodsThirty patients who fulfilled the criteria were enrolled. The most probable candidate gene among KCNQ1, KCNH2 and SCN5A were sequenced.ResultsOf the 30 patients, 22 were classified at LQT1, two as LQT2 and six as LQT3. Mutations in KCNQ1 were identified in 17 (77%) of 22 LQT1 patients, KCNH2 mutation in one of two LQT2 and SCN5A mutations in two of six LQT3 patients. We correlated the presence of the specific ECG morphology in all mutation positive cases. Eight mutations in KCNQ1 and one in SCN5A were novel and predicted to be pathogenic by in-silico analysis. Of all parents with heterozygous mutations, 24 (92%) of 26 were asymptomatic. Ten available siblings of nine probands were screened and three were homozygous and symptomatic, five heterozygous and asymptomatic.ConclusionsThis study in a cohort of Asian Indian patients highlights the mutation spectrum of common Long QT syndromes. The clinical utility for prevention of unexplained sudden cardiac deaths is an important sequel to identification of the mutation in at-risk family members.  相似文献   

14.
15.
Fifty-eight typical EAEC isolates from children with diarrhoea were examined for HEp-2 cell adherence assay, presence of dispersin (aap), yersiniabactin (irp2), plasmid encoded toxins (pet), Shigella enterotoxin1 (set1A) and cryptic open reading frame (shf) putative virulence genes by polymerase chain reaction as well as for biofilm production. All the isolates showed aggregative adherence pattern on HEp-2 cells. All but five isolates (91.3 %) carried aap gene. While irp2, pet, set1A and shf genes were detected in 68.9, 5.1, 39.6, and 60.3 % isolates, respectively. Thirty-three (64.7 %) isolates out of 51 tested were found to produce biofilm which was found to be significantly associated only with set1A virulence gene (P = 0.025). Highest amount of biofilm was produced by a strain that possessed all the genes studied. Out of 14 isolates in which the most frequent gene combination (aap, irp2 and shf) was observed, only six produced biofilm. It is concluded that there is significant heterogeneity in putative virulence genes of EAEC isolates from diarrhoeic children and biofilm formation is associated with multiple genes.  相似文献   

16.
17.
Hsp105 (Hsp105alpha and Hsp105beta), major heat shock proteins in mammalian cells, belong to a subgroup of the HSP70 family, HSP105/110. Previously, we have shown that Hsp105alpha has completely different effects on stress-induced apoptosis depending on cell type. However, the molecular mechanisms by which Hsp105alpha regulates stress-induced apoptosis are not fully understood. Here, we established HeLa cells that overexpress either Hsp105alpha or Hsp105beta by removing doxycycline and examined how Hsp105 modifies staurosporine (STS)-induced apoptosis in HeLa cells. Apoptotic features such as the externalization of phosphatidylserine on the plasma membrane and nuclear morphological changes were induced by the treatment with STS, and the STS-induced apoptosis was suppressed by overexpression of Hsp105alpha or Hsp105beta. In addition, we found that overexpression of Hsp105alpha or Hsp105beta suppressed the activation of caspase-3 and caspase-9 by preventing the release of cytochrome c from mitochondria. Furthermore, the translocation of Bax to mitochondria, which results in the release of cytochrome c from the mitochondria, was also suppressed by the overexpression of Hsp105alpha or Hsp105beta. Thus, it is suggested that Hsp105 suppresses the stress-induced apoptosis at its initial step, the translocation of Bax to mitochondria in HeLa cells.  相似文献   

18.
In this work we are proposing Homology modeled structures of Mycobacterium leprae 18kDa heat shock protein and its mutant. The more closely related structure of the small heat shock protein (sHSP) belonging to the eukaryotic species from wheat sHSP16.9 and 16.3kDa ACR1 protein from Mycobacterium tuberculosis were used as template structures. Each model contains an N-terminal domain, alpha-crystalline domain and a C-terminal tail. The models showed that a single point mutation from serine to proline at 52nd position causes structural changes. The structural changes are observed in N-terminal region and alpha-crystalline domains. Serine in 52nd position is observed in β4 strand and Proline in 52nd position is observed in loop. The number of residues contributing α helix at N-terminal region varies in both models. In 18S more number of residues is present in α helix when compared to 18P. The loop regions between β3 and β4 strands of both models vary in number of residues present in it. Number of residues contributing β4 strand in both models vary. β6 strand is absent in both models. Major functional peptide region of alpha crystalline domains of both models varies. These differences observed in secondary structures support their distinct functional roles. It also emphasizes that a point mutation can cause structural variation.  相似文献   

19.
Pan T  Li X  Xie W  Jankovic J  Le W 《FEBS letters》2005,579(30):6716-6720
Valproic acid (VPA), an anticonvulsant and mood-stabilizing drug, has been reported to exert neuroprotection against a variety of insults. We now show that VPA attenuates rotenone (a potent complex I inhibitor)-induced apoptosis through the induction of heat shock protein 70, which may interact with apoptotic-protease-activating factor 1. Activation of p-Akt, p-Bcl-2, as well as p-Erk1/2 by VPA may be co-contributors to the protection.  相似文献   

20.
Neural crest cells (NCCs) migrate from different regions along the anterior–posterior axis of the neural tube (NT) to form different structures. Defective NCC development causes congenital neurocristopathies affecting multiple NCC-derived tissues in human. Perturbed Hoxb5 signaling in vagal NCC causes enteric nervous system (ENS) defects. This study aims to further investigate if perturbed Hoxb5 signaling in trunk NCC contributes to defects of other NCC-derived tissues besides the ENS. We perturbed Hoxb5 signaling in NCC from the entire NT, and investigated its impact in the development of tissues derived from these cells in mice. Perturbation of Hoxb5 signaling in these NCC resulted in Sox9 downregulation, NCC apoptosis, hypoplastic sympathetic and dorsal root ganglia, hypopigmentation and ENS defects. Mutant mice with NCC-specific Sox9 deletion also displayed some of these phenotypes. In vitro and in vivo assays indicated that the Sox9 promoter was bound and trans-activated by Hoxb5. In ovo studies further revealed that Sox9 alleviated apoptosis induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Sox9 expression in chick NT. This study demonstrates that Hoxb5 regulates Sox9 expression in NCC and disruption of this signaling causes Sox9 downregulation, NCC apoptosis and multiple NCC-developmental defects. Phenotypes such as ENS deficiency, hypopigmentation and some of the neurological defects are reported in patients with Hirschsprung disease (HSCR). Whether dysregulation of Hoxb5 signaling and early depletion of NCC contribute to ENS defect and other neurocristopathies in HSCR patients deserves further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号