首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many of the effects of carnitine are ascribed to its antioxidant properties. The aim of this study was to evaluate the antioxidant properties of carnitine in vitro. Carnitine was found to decolorize ABTS•+, and to protect fluorescein against bleaching induced by AAPH-derived peroxyl radicals and peroxynitrite, thiol groups against oxidation induced by hydrogen peroxide, peroxyl radicals, hypochlorite and peroxynitrite, and erythrocytes against hemolysis induced by peroxyl radicals and hypochlorite. These results show that carnitine has a direct antioxidant action against physiologically relevant oxidants.  相似文献   

2.
Peroxynitrite (ONOO/ONOOH), the product of the diffusion controlled reaction between nitric oxide (NO) and superoxide anion (), is a strong oxidizing and nitrating agent. Several heme proteins react rapidly with peroxynitrite, some of them catalyze its decomposition. In this work we found, contrary to previous reports, that catalase, a ferriheme enzyme, catalytically scavenges peroxynitrite. The second-order reaction rate constants of peroxynitrite decay catalyzed by catalase increase with decreasing pH and are equal to (2.7 ± 0.2) × 106, (1.7 ± 0.1) × 106 and (0.8 ± 0.1) × 106 M−1 s−1 at pH 6.1, 7.1 and 8.0, respectively. This dependence suggests that peroxynitrous acid, ONOOH, is the species that reacts with heme center of catalase. The possible reaction mechanisms of the decay of peroxynitrite catalyzed by catalase and physiological relevance of this reaction are discussed.  相似文献   

3.
The kinetics of the reaction of chloroperoxidase with peroxynitrite was studied under neutral and acidic pH by stopped-flow spectrophotometry. Chloroperoxidase catalyzed peroxynitrite decay with the rate constant, kc, increasing with decreasing pH. The values of kc obtained at pH 5.1, 6.1 and 7.1 were equal to: (1.96 ± 0.03) × 106, (1.63 ± 0.04) × 106 and (0.71 ± 0.01) × 106 M−1 s−1, respectively. Chloroperoxidase was converted to compound II by peroxynitrite with pH-dependent rate constants: (12.3 ± 0.4) × 106 and (3.8 ± 0.3) × 106 M−1 s−1 at pH 5.1 and 7.1, respectively. After most of peroxynitrite had disappeared, the conversion of compound II into the ferric form of chloroperoxidase was observed. The recovery of the native enzyme was completed within 1 s and 5 s at pH 5.1 and 7.1, respectively. The possible reaction mechanisms of the catalytic decomposition of peroxynitrite by chloroperoxidase are discussed.  相似文献   

4.
Microorganisms catalyse the reaction and in this study, mainly the effect of different concentration of biomass on COD removal was investigated. Three sets of two-compartment reactors were established. The cation exchange membrane (CEM) was employed in each reactor and 0.5 V of electricity was supplied. Graphite rod employed in cathodic part and a combination of graphite rod and graphite granules were used in anodic chamber. The highest rate of COD removal (40 ± 2.0 ppm/h) was achieved in the reactor which had initial VSS at 6130 mg/l, whereas the slowest rate of 23 ± 1.2 ppm/h in the reactor started with 3365 mgVSS/l. Some ammonia removal was also noticed during the operation. Further understanding and improvement is needed to be competitive against traditional wastewater treatment processes.  相似文献   

5.
Hepatically-derived selenoprotein P (SePP) transports selenium (Se) via blood to other tissues including the testes. Male Sepp-knockout mice are infertile. SePP-mediated Se transport to Sertoli cells is needed for supporting biosynthesis of the selenoenzyme glutathione peroxidase-4 (GPX4) in spermatozoa. GPX4 becomes a structural component of sperm midpiece during sperm maturation, and its expression correlates to semen quality. We tested whether SePP is also present in seminal plasma, potentially correlating to fertility parameters. Semen quality was assessed by sperm density, morphology and motility. SePP was measured by an immunoluminometric assay, and trace elements were determined by X-ray fluorescence spectroscopy. SePP levels were considerably lower in seminal plasma as compared to serum (0.4 ± 0.1 mg/l vs. 3.5 ± 1.0 mg/l); Se concentrations showed a similar but less pronounced difference (48.9 ± 20.7 μg/l vs. 106.7 ± 17.3 μg/l). Se and Zn correlated positively in seminal fluid but not in serum. Seminal plasma SePP concentrations were independent of serum SePP concentrations, but correlated positively to sperm density and fraction of vital sperm. SePP concentrations in seminal plasma of vasectomized men were similar to controls indicating that accessory sex glands are a testes-independent source of SePP. This notion was corroborated by histochemical analyses localizing SePP in epithelial cells of seminal vesicles. We conclude that SePP is not only involved in Se transport to testes supporting GPX4 biosynthesis but it also becomes secreted into seminal plasma, likely important to protect sperm during storage, genital tract passage and final journey.  相似文献   

6.
High-throughput drug screening methods against the intracellular stage of Leishmania have been facilitated by the development of in vitro models of infection. The use of cell lines rather than primary cells facilitates these methods. Peripheral blood mononuclear cell (PBMC) derived macrophages and THP-1 cells were infected with stationary phase egfp transfected Leishmania amazonensis parasites and then treated with anti-leishmanial compounds. Drug activity was measured using a flow cytometric approach, and toxicity was assessed using either the MTT assay or trypan blue dye exclusion. Calculated EC50’s for amphotericin B, sodium stibogluconate, and miltefosine were 0.1445 ± 0.0005 μg/ml, 0.1203 ± 0.018 mg/ml, and 26.71 μM using THP-1 cells, and 0.179 ± 0.035 μg/ml, 0.1948 ± 0.0364 mg/ml, and 13.77 ± 10.74 μM using PBMC derived macrophages, respectively. We conclude that a flow cytometric approach using egfp transfected Leishmania species can be used to evaluate anti-leishmanial compounds against the amastigote stage of the parasite in THP-1 cells with excellent concordance to human PBMC derived macrophages.  相似文献   

7.
Peroxynitrite is a strong oxidant that has been proposed to form in chloroplasts. The interaction between peroxynitrite and photosystem II (PSII) has been investigated to determine whether this oxidant could be a hazard for PSII. Peroxynitrite is shown to inhibit oxygen evolution in PSII membranes in a dose-dependent manner. Analyses by PAM fluorimetry and EPR spectroscopy have demonstrated that the inhibition target of peroxynitrite is on the PSII acceptor side. In the presence of the herbicide DCMU, the chlorophyll (Chl) a fluorescence induction curve is inhibited by peroxynitrite, but the slow phase of the Chl a fluorescence decay does not change. EPR studies demonstrate that the Signal IIslow and Signal IIfast of peroxynitrite-treated Tris-washed PSII membranes are induced at room temperature, implying that the redox active tyrosines YZ and YD of PSII are not significantly nitrated. A featureless EPR signal with a g value of approximately 2.0043 ± 0.0003 and a line width of 10 ± 1 G is induced under continuous illumination in the presence of peroxynitrite. This new EPR signal corresponds with the semireduced plastoquinone QA in the absence of magnetic interaction with the non-heme Fe2+. We conclude that peroxynitrite impairs PSII electron transport in the QAFe2+ niche.  相似文献   

8.
The effect of human serum albumin (HSA) on an immunokinetic assay for an antibody to bovine serum albumin has been determined in model serum solutions with HSA concentrations in the range 0 to 450 μM (0-30 mg ml−1). The assay is performed on two plasmon-based detection platforms: a continuous gold surface and a nanoparticle-based array reader. The assay has a minimum detection concentration of 760 ± 160 pM (120 ± 25 ng ml−1) in phosphate-buffered saline, falling to 2.5 ± 0.7 nM (380 ± 100 ng ml−1) in physiological HSA concentration. The concentration of HSA correlates with the refractive index of the solution, and this may be used to calibrate assay response. The addition of the charged chaotrope SCN in 150 mM concentration improves the reproducibility and consistency of the assay, with a minimum detection concentration of 2.9 ± 0.5 nM (440 ± 80 ng ml−1). The effect of high concentrations of HSA on the immunokinetic assay can be corrected with a measurement of bulk refractive index in a reference channel.  相似文献   

9.
Simultaneous production of nitric oxide (NO) and superoxide generates peroxynitrite and causes nitroxidative stress. The fluorometric method for NO detection is based on the formation of a fluorescent product from the reaction of a nonfluorescent probe molecule with NO-derived nitrosating species. Here, we present an example of how nitroxidative chemistry could interact with fluorescent probe chemistry. 2,3-Naphthotriazole (NAT) is the NO-derived fluorescent product of 2,3-diaminonaphthalene (DAN), a commonly used NO-detecting molecule. We show that NO/superoxide cogeneration, and particularly peroxynitrite, mediates the chemical decomposition of NAT. Moreover, the extent of NAT decomposition depends on the relative fluxes of NO and superoxide; the maximum effect being reached at almost equivalent generation rates for both radicals. The rate constant for the reaction of NAT with peroxynitrite was determined to be 2.2 × 103 M−1 s−1. Further, various peroxynitrite scavengers were shown to effectively inhibit NO/superoxide- and peroxynitrite-mediated decomposition of NAT. Taken together, the present study suggests that the interference of a fluorometric NO assay can be originated from the interaction between the final fluorescent product and the formed reactive nitrogen and oxygen species.  相似文献   

10.
The effect of additives on welan gum production produced by fermentation with Alcaligenes sp. CGMCC2428 was studied. Tween-40 was the best additive for improving welan gum production and welan gum displayed better rheological properties than that obtained by control fermentation without additives. Response surface methodology was employed to optimize the culture conditions for welan gum production in the shake flask culture, including Tween-40 concentration, pH and culture temperature. The optimal conditions were determined as follows: Tween-40 concentration 0.94 g/l, pH 6.9 and temperature 29.6 °C. The corresponding experimental concentration of welan gum was 23.62 ± 0.60 g/l, which was agreed closely with the predicted value (23.48 g/l). Validation experiments were also carried out to prove the adequacy and the accuracy of the model obtained. The welan gum fermentation in a 7.5 l bioreactor reached 24.90 ± 0.68 g/l.  相似文献   

11.
Black tea is recently reported to have anti-carcinogenic effects through pro-oxidant property, but the underlying mechanisms remain unclear. Mammalian cytosolic thioredoxin reductase (TrxR1) is well -known for its anti-oxidation activity. In this study, we found that black tea extract (BTE) and theaflavins (TFs), the major black tea polyphenols, inhibited the purified TrxR1 with IC50 44 μg/ml and 21 ± 1 μg/ml, respectively. Kinetics of TFs exhibited a mixed type of competitive and non-competitive inhibition, with Kis 4 ± 1 μg/ml and Kii 26 ± 5 μg/ml against coenzyme NADPH, and with Kis 12 ± 3 μg/ml and Kii 27 ± 5 μg/ml against substrate DTNB. In addition, TFs inhibited TrxR1 in a time-dependent manner. In an equilibrium step, a reversible TrxR1-TFs complex (E * I) forms, which is followed by a slow irreversible first-order inactivation step. Rate constant of the inactivation was 0.7 min−1, and dissociation constant of E * I was 51.9 μg/ml. Treatment of NADPH-reduced TrxR1 with TFs decreased 5-(Iodoacetamido) fluorescein incorporation, a fluorescent thiol-reactive reagent, suggesting that Sec/Cys residue(s) in the active site may be involved in the binding of TFs. The inhibitory capacity of TFs depends on their structure. Among the TFs tested, gallated forms had strong inhibitory effects. The interactions between TFs and TrxR1 were investigated by molecular docking, which revealed important features of the binding mechanism of theaflavins. An inhibitory effect of BTE on viability of HeLa cells was observed with IC50 29 μg/ml. At 33 μg/ml of BTE, TrxR1 activity in HeLa cells was decreased by 73% at 22 h after BTE treatment. TFs inhibited cell viability with IC50 10 ± 4 μg/ml for HeLa cells and with IC50 20 ± 5 μg/ml for EAhy926 cells. The cell susceptibility to TFs was inversely correlated to cellular levels of TrxR1. The inhibitory actions of TFs on TrxR1 may be an important mechanism of their anti-cancer properties.  相似文献   

12.
Bovine (Bos indicus) herpesviruses have been associated with reproductive disease. Type 1, the most studied species, is best known for its reproductive and respiratory effects. Type 5 (BoHV-5) has been detected in bull semen and aborted fetuses but not in oocytes and embryos. This study consisted of three experiments that evaluated (1) BoHV-5-infected oocytes matured in medium with fetal bovine serum (BoHV-FBS) or polyvinyl alcohol (BoHV-PVA) and fertilized by noninfected sperm; (2) noninfected oocytes fertilized by BoHV-5-infected sperm; and (3) infection of presumptive zygotes by BoHV-5. Each treatment involved nine drops of 15 to 20 oocytes. Infection with BoHV-5 was detected by polymerase chain reaction and in situ hybridization assay, and fertilization capacity and embryonic development were assessed using in vitro culture. Experimentally induced infection was obtained in all experiments, and vertical transmission of BoHV-5 by gametes was confirmed. The cleavage rate was reduced (P = 0.0201) in BoHV-FBS (80.4 ± 8.9%; mean ± SD) compared with that of noninfected oocytes (89.9 ± 6.5%); neither differed from BoHV-PVA (87.3 ± 7.1%), and the resulting embryo production rate was not significantly different among groups. Rates of cleavage (87.5 ± 7.5% vs. 92.2 ± 5.5%, control vs. infected) and development of embryos (41.7 ± 9.9% vs. 44.3 ± 7.7% to morula/blastocyst/expanded blastocyst [M/B/EB] and 39.6 ± 10.3% vs. 40.8 ± 9.2% to blastocyst/expanded blastocyst/hatching blastocyst [B/EB/HB] stages) were not compromised by infected sperm (P = 0.1462, P = 0.5402, and P = 0.8074, respectively). However, presumptive zygotes directly infected 1 d after fertilization produced a lower number (P = 0.0140 to M/B/EB and P = 0.002 to B/EB/HB stages) of in vitro-produced embryos (31.6 ± 4.6 vs. 25.0 ± 5.5 and 31.6 ± 4.6 vs. 20.2 ± 5.4; control vs. infected). In conclusion, BoHV-5 infected gametes and was transmissible to the embryo during in vitro development. As zygotes infected 1 d after fertilization had compromised development, BoHV-5 has the potential to be a pathogen with economic consequences.  相似文献   

13.

Purpose

In this study, we set out to establish an in vivo animal model of oxidative stress in the retinal ganglion cells (RGCs) and determine whether there is a link between oxidative stress in the RGCs and the activation of calpain, a major part of the apoptotic pathway.

Materials and methods

Oxidative stress was induced in the RGCs of C57BL/6 mice by the intravitreal administration of 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH, 30 mM, 2 μl). Control eyes were injected with 2 μl of vehicle. Surviving Fluorogold (FG)-labeled RGCs were then counted in retinal flat mounts. Double staining with CellROX and Annexin V was performed to investigate the co-localization of free radical generation and apoptosis. An immunoblot assay was used both to indirectly evaluate calpain activation in the AAPH-treated eyes by confirming α-fodrin cleavage, and also to evaluate the effect of SNJ-1945 (a specific calpain inhibitor: 4% w/v, 100 mg/kg, intraperitoneal administration) in these eyes.

Results

Intravitreal administration of AAPH led to a significant decrease in FG-labeled RGCs 7 days after treatment (control: 3806.7 ± 575.2 RGCs/mm2, AAPH: 3156.1 ± 371.2 RGCs/mm2, P < 0.01). CellROX and Annexin V signals were co-localized in the FG-labeled RGCs 24 h after AAPH injection. An immunoblot assay revealed a cleaved α-fodrin band that increased significantly 24 h after AAPH administration. Intraperitoneally administered SNJ-1945 prevented the cleavage of α-fodrin and had a neuroprotective effect against AAPH-induced RGC death (AAPH: 3354.0 ± 226.9 RGCs/mm2, AAPH+SNJ-1945: 3717.1 ± 614.6 RGCs/mm2, P < 0.01).

Conclusion

AAPH administration was an effective model of oxidative stress in the RGCs, showing that oxidative stress directly activated the calpain pathway and induced RGC death. Furthermore, inhibition of the calpain pathway protected the RGCs after AAPH administration.  相似文献   

14.
The present study relates to different polyunsaturated fatty acids (PUFAs) which were used as elicitors to enhance biomass accumulation and ginsenoside production in Panax ginseng. Adventitious root cultures of ginseng were elicited with oleic and linolenic acid at 0, 1, 5, 10 or 50 µmol/l concentrations respectively. Elicitors were added to the medium of adventitious roots on the 40th day of culture and roots were harvested on day 47. Cultures supplemented with oleic acid decreased root biomass and ginsenoside accumulation. Cultures supplemented with 1 µmol/l linolenic acid enhanced ginsenoside accumulation, without the decrease of adventitious root biomass. Linolenic acid enhanced the biosynthesis of both protopanxatriols (2.95 ± 0.048 mg/g DW) and protopanxadiols (5.66 ± 0.043 mg/g DW) compared to that of control at (1.41 ± 0.002 mg/g DW) and (1.58 ± 0.006 mg/g DW) respectively. No changes in polysaccharides and phenolics content have been noticed upon elicitation with PUFAs. This is the first report on linolenic acid as an elicitor for ginsenoside accumulation in ginseng adventitious root cultures.  相似文献   

15.
Hu ZC  Zheng YG  Shen YC 《Bioresource technology》2011,102(14):7177-7182
1,3-Dihydroxyacetone can be produced by biotransformation of glycerol with glycerol dehydrogenase from Gluconobacter oxydans cells. Firstly, improvement the activity of glycerol dehydrogenase was carried out by medium optimization. The optimal medium for cell cultivation was composed of 5.6 g/l yeast extract, 4.7 g/l glycerol, 42.1 g/l mannitol, 0.5 g/l K2HPO4, 0.5 g/l KH2PO4, 0.1 g/l MgSO4·7H2O, and 2.0 g/l CaCO3 with the initial pH of 4.9. Secondly, an internal loop airlift bioreactor was applied for DHA production from glycerol by resting cells of G. oxydans ZJB09113. Furthermore, the effects of pH, aeration rate and cell content on DHA production and glycerol feeding strategy were investigated. 156.3 ± 7.8 g/l of maximal DHA concentration with 89.8 ± 2.4% of conversion rate of glycerol to DHA was achieved after 72 h of biotransformation using 10 g/l resting cells at 30 °C, pH 5.0 and 1.5 vvm of aeration rate.  相似文献   

16.

Background

Peroxynitrite, the product of the reaction between superoxide radicals and nitric oxide, is an elusive oxidant with a short half-life and a low steady-state concentration in biological systems; it promotes nitroxidative damage.

Scope of review

We will consider kinetic and mechanistic aspects that allow rationalizing the biological fate of peroxynitrite from data obtained by a combination of methods that include fast kinetic techniques, electron paramagnetic resonance and kinetic simulations. In addition, we provide a quantitative analysis of peroxynitrite production rates and conceivable steady–state levels in living systems.

Major conclusions

The preferential reactions of peroxynitrite in vivo include those with carbon dioxide, thiols and metalloproteins; its homolysis represents only < 1% of its fate. To note, carbon dioxide accounts for a significant fraction of peroxynitrite consumption leading to the formation of strong one-electron oxidants, carbonate radicals and nitrogen dioxide. On the other hand, peroxynitrite is rapidly reduced by peroxiredoxins, which represent efficient thiol-based peroxynitrite detoxification systems. Glutathione, present at mM concentration in cells and frequently considered a direct scavenger of peroxynitrite, does not react sufficiently fast with it in vivo; glutathione mainly inhibits peroxynitrite-dependent processes by reactions with secondary radicals. The detection of protein 3-nitrotyrosine, a molecular footprint, can demonstrate peroxynitrite formation in vivo. Basal peroxynitrite formation rates in cells can be estimated in the order of 0.1 to 0.5 μM s− 1 and its steady-state concentration at ~ 1 nM.

General significance

The analysis provides a handle to predict the preferential fate and steady-state levels of peroxynitrite in living systems. This is useful to understand pathophysiological aspects and pharmacological prospects connected to peroxynitrite. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

17.
S. Tsai  F.W. Kuo  C. Lin 《Theriogenology》2010,73(5):605-611
The objective was to examine the effects of cryoprotectants on oocytes of hard corals (Echinopora spp.) to obtain basic knowledge for cryopreservation procedures. Oocytes were exposed to various concentrations of cryoprotectants (0.25 to 5.0 M) for 20 min at room temperature (25 °C). Two tests were used to assess ovarian follicle viability: fluorescein diacetate (FDA) + propidium iodide (PI) staining, and adenosine triphosphate (ATP) assay. Both FDA + PI staining and ATP assay indicated that cryoprotectant toxicity to oocytes increased in the order methanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), and ethylene glycol (EG). The no observed effect concentrations for Echinopora spp. oocytes were 1.0, 0.5, 0.25, and 0.25 M for methanol, DMSO, PG, and EG, respectively, when assessed with FDA + PI. The ATP assay was more sensitive than FDA + PI staining (P < 0.05). Oocyte viability after 1.0 M methanol, DMSO, EG, or PG treatment for 20 min at room temperature assessed with FDA + PI tests and ATP assay were 88.9 ± 3.1% and 72.2 ± 4.4%, 66.2 ± 5.0% and 23.2 ± 4.9%, 58.9 ± 5.4% and 1.1 ± 0.7%, and 49.1 ± 5.1% and 0.9 ± 0.5%, respectively. We inferred that the ATP assay was a valuable measure of cellular injury after cryoprotectant incubation. The results of this study provided a basis for development of protocols to cryopreserve coral oocytes.  相似文献   

18.
Yang Cai  Matthew A. Tarr 《Proteomics》2014,14(21-22):2614-2622
Low‐density lipoprotein (LDL) is a major cholesterol carrier in human blood. Oxidations of apolipoprotein B‐100 (apo B‐100, LDL protein) could be proatherogenic and play critical roles in early stages of plaque formation in the arterial wall. The structure of apo B‐100 is still poorly understood, partially due to its size (550 KDa, 4563 amino acids). To gain an insight into LDL structure, we mapped the regions of apo B‐100 in human LDL that were prone to oxidation using peroxynitrite and hypochlorite as probes. In this study, LDL was incubated with various concentrations of peroxynitrite and sodium hypochlorite in bicarbonate buffer. The LDL protein apo B‐100 was delipidated, denatured, alkylated, and subjected to tryptic digestion. Tryptic peptides were analyzed employing LC‐MS/MS. Database search was performed against the apo B‐100 database (SwissProt accession #P04114) using “SEQUEST” algorithm to identify peroxynitrite and hypochlorite‐mediated oxidations markers nitrotyrosine, nitrotryptophan, hydroxy‐tryptophan, and 3‐chlorotyrosine. Several site‐specific oxidations were identified in apo B‐100 after treatment of intact LDL particles with the oxidants. We hypothesize that these regions could be accessible to oxidant and critical for early events in atherosclerotic plaque deposition.  相似文献   

19.
In present study, an HPLC method coupled with photodiode array detector (HPLC-PDA) was established for determination and pharmacokinetics of gastrodin (GAS) in human plasma after an oral administration of GAS capsule. In the method, ethanol and dichloromethane were respectively used for deproteinization and purification during the sample preparation procedure. Separation of GAS was achieved on an AichromBond-AQ C18 column (5 μm, 150 mm × 4.6 mm) with the mobile phase of methanol–0.1% phosphoric acid solution (2:98, v/v) at a flow rate of 0.8 ml/min. The wavelength was set at 220 nm and the injection volume was 20 μl. Under the conditions, the calibration curve was linear within the concentration range of 50–4000 ng/ml with the correlation coefficient (r) of 0.99554 (weight = 1/X2) and the lower limit of quantification (LLOQ) was 50 ng/ml. The inter- and intra-day precisions were less than 11% and the accuracies (%) were within the range of 95.55–103.78%. The extraction recoveries were over 65% with RSDs less than 5.50%. The GAS was proved to be stable under tested conditions. Thus, the method was valid enough to be applied for pharmacokinetic study of GAS in human plasma. The pharmacokinetic parameters of GAS in human plasma after an oral administration of 200 mg GAS capsule were described as: Cmax, 1484.55 ± 285.05 ng/ml; Tmax, 0.81 ± 0.16 h; t1/2α, 3.78 ± 2.33 h; t1/2β, 6.06 ± 3.20 h; t1/2Ka, 0.18 ± 0.53 h; K12, 0.18 ± 0.41/h; K21, 0.20 ± 0.16/h; K10, 4.11 ± 15.81/h; V1/F, 180.35 ± 89.44 L; CL/F, 62.50 ± 140.03 l/h; AUC0→t, 5619.41 ± 1972.88 (ng/ml) h; and AUC0→∞, 7210.26 ± 3472.74 (ng/ml) h, respectively. These will be useful for the clinical application of GAS.  相似文献   

20.
Caulerpa racemosa (Forsskål) is a green marine alga which spreads from tropical to warm-water regions. Due to having invasive capacity C. racemosa var. cylindracea is a well-known biological pollution in Mediterranean Sea. One of the most important secondary metabolites of C. racemosa is Caulerpenyne (CPN). In the present study, antiproliferative and apoptotic effects of C. racemosa var. cylindracea extract and purified CPN on two well-known neuroblastoma cell lines, SHSY5Y and Kelly, are investigated. The antiproliferative and, additionally, newly attributed apoptotic effects of both C. racemosa var. cylindracea extract and purified CPN on SHSY5Y and Kelly cell lines have been shown in the present study. IC50 values are 0.59 ± 0.06; 1.06 ± 0.23 g wet alga/methanol and 5.64 ± 0.09; 6.02 ± 0.09 μM CPN for C. racemosa var. cylindracea extract and purified CPN on SHSY5Y and Kelly cell lines, respectively. Percentages of apoptotic cells of SHSY5Y and Kelly in 0, 0.1 and 1 μM CPN conditions were 1.00 ± 0.71, 3.00 ± 0.71 and 49.40 ± 3.78, 39.60 ± 6.19 and 78.00 ± 2.74, 69.40 ± 3.78, respectively. In conclusion, the present study shows the antiproliferative effect of C. racemosa var. cylindracea extract and newly attributed apoptotic effects of C. racemosa var. cylindracea this extract. Compared to other alkylating anticancer drugs, CPN and also C. racemosa var. cylindracea extract might be considered as an alternative native source of antitumor drugs. Inasmuch as both C. racemosa extract and CPN have shown both antiproliferative and apoptotic effects on SHSY5Y and Kelly cell lines, the CPN and CPN derivatives might be considered as multifunctional agents in cell metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号