首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.  相似文献   

2.
Lunasin, a cancer-preventive peptide, was isolated from soybean, barley, and wheat. Previous studies showed that this 43-amino acid peptide has the ability to suppress chemical carcinogen-induced transformation in mammalian cells and skin carcinogenesis in mice. In this study, we attempted to use the Escherichia coli T7 expression system for expression of lunasin. The lunasin gene was synthesized by overlapping extension polymerase chain reaction and expressed in E. coli BL21(DE3) with the use of vector pET29a. The recombinant lunasin containing his-tag at the C-terminus was expressed in soluble form which could be purified by immobilized metal affinity chromatography. After 4 h, the expression level is above 4.73 mg of recombinant his-tagged lunasin/L of Luria–Bertani broth. It does not affect the bacterial growth and expression levels. This is the first study that successfully uses E. coli as a host to produce valuable bioactive lunasin. The result of in vitro bioassay showed that the purified recombinant lunasin can inhibit histone acetylation. Recombinant lunasin also inhibits the release of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and nitric oxide production). Compared with other research methods on extraction or chemical synthesis to produce lunasin, our method is very efficient in saving time and cost. In the future, it could be applied in medicine and structure–function determination.  相似文献   

3.
Lunasin is a 43-amino acid peptide from seeds and grains with bioavailability in humans and potent chemotherapeutic action against several cancer cell lines. Here, we investigate new information about the physicochemical and structural properties of lunasin using circular dichroism (CD), fluorescence spectroscopy, electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS), size exclusion chromatography (SEC), molecular dynamics (MD), and bioinformatics. CD analysis and disorder prediction obtained by PONDR indicate that lunasin has a mostly unordered structure. Double wavelength [θ]222nm x [θ]200nm plot data suggests that lunasin is an intrinsically disordered peptide (IDP) in a pre-molten globule-like (PMG-like) state, while CD spectrum deconvolution and MD simulation indicate small β-strand content. The presence of residual structure was supported by loss of CD signal at 222 nm after treatment with urea and by increasing fluorescence emission upon bis-ANS binding. Lunasin also demonstrated stability to heating up to the temperature of 100 °C, as verified by CD. MD and CD analyses in the presence of TFE and MoRFpred prediction indicated the helix propensity of lunasin. ESI-IMS-MS data revealed that lunasin shows a propensity to form disulfide bonds at the conditions used. MD data also indicated that disulfide bond formation affects the adopted structure, showing a possible role of aspartyl-end in structure stabilization and compaction. In conclusion, our data support a characterization of lunasin as a peptide with an intrinsic disorder in a PMG-like state and reveal new aspects about its structural stability and plasticity, as well as the effects of disulfide bond formation and electrostatic attractions.  相似文献   

4.
5.
6.

Background

The lower incidence of breast cancer among Asian women compared with Western countries has been partly attributed to soy in the Asian diet, leading to efforts to identify the bioactive components that are responsible. Soy Bowman Birk Inhibitor Concentrate (BBIC) is a known cancer preventive agent now in human clinical trials.

Methodology/Principal Findings

The objectives of this work are to establish the presence and delineate the in vitro activity of lunasin and BBI found in BBIC, and study their bioavailability after oral administration to mice and rats. We report that lunasin and BBI are the two main bioactive ingredients of BBIC based on inhibition of foci formation, lunasin being more efficacious than BBI on an equimolar basis. BBI and soy Kunitz Trypsin Inhibitor protect lunasin from in vitro digestion with pancreatin. Oral administration of 3H-labeled lunasin with lunasin-enriched soy results in 30% of the peptide reaching target tissues in an intact and bioactive form. In a xenograft model of nude mice transplanted with human breast cancer MDA-MB-231 cells, intraperitoneal injections of lunasin, at 20 mg/kg and 4 mg/kg body weight, decrease tumor incidence by 49% and 33%, respectively, compared with the vehicle-treated group. In contrast, injection with BBI at 20 mg/kg body weight shows no effect on tumor incidence. Tumor generation is significantly reduced with the two doses of lunasin, while BBI is ineffective. Lunasin inhibits cell proliferation and induces cell death in the breast tumor sections.

Conclusions/Significance

We conclude that lunasin is actually the bioactive cancer preventive agent in BBIC, and BBI simply protects lunasin from digestion when soybean and other seed foods are eaten by humans.  相似文献   

7.
Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of >99% purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44 amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the development of lunasin as a potential nutraceutical or therapeutic anticancer agent.  相似文献   

8.
9.
IL‐15 is a proinflammatory cytokine that acts early in the inflammatory response and has been associated with several autoimmune diseases including rheumatoid arthritis, where it had been proposed as a therapeutic target. We recently reported an IL‐15 antagonist peptide corresponding to sequence 36–45 of IL‐15 (KVTAMKCFLL) named P8, which specifically binds to IL‐15Rα and inhibits IL‐15 biological activity with a half maximal inhibitory concentration (IC50) of 130 µ m in CTLL‐2 proliferation assay. In order to improve binding of peptide P8 to the receptor IL‐15Rα, we used an Ala scan strategy to study contribution of each individual amino acid to the peptide's antagonist effect. Here, we found that Phe and Cys are important for peptide binding to IL‐15Rα. We also investigated other single site mutations and replaced the second Lys in the sequence by the polar non‐charged amino acid threonine. The resulting peptide [K6T]P8 exhibited a higher activity than P8 with an IC50 of 24 µm . We also found that this peptide was more active than peptide P8 in the inhibition of TNFα secretion by synovial cells from rheumatoid arthritis patients. The peptide [K6T]P8 described in this work is a new type of IL‐15 antagonist and constitutes a potential therapeutic agent for rheumatoid arthritis. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
A soybean cDNA encoding the small subunit peptide of a cotyledon-specific 2S albumin (Gm2S-1) is thought to play a role in arresting mitosis during the DNA endoreduplication and cell expansion phase of seed development. The peptide (termed lunasin) contains the cell adhesion motif Arg-Gly-Asp (RGD) followed by eight aspartic acid residues at its C-terminal end. A chimeric gene encoding the lunasin peptide tagged with green fluorescent protein (GFP) arrested cell division, caused abnormal spindle fiber elongation, chromosomal fragmentation, and cell lysis when transiently transfected into murine embryo fibroblast, murine hepatoma, and human breast cancer cells. Deletion of the polyaspartyl end abolished the antimitotic effect. Subcellular localization of lunasin and immunobinding assay using synthetic peptides revealed the preferential adherence of lunasin to chromatin. Immunofluorescence showed that kinetochore proteins were displaced from the centromere in lunasin-transfected cells. These observations suggest that lunasin binds to the chromatin, leading to disruption of kinetochore formation and inhibition of mitosis.  相似文献   

11.
Interleukin (IL)–15 is an inflammatory cytokine that constitutes a validated therapeutic target in some immunopathologies, including rheumatoid arthritis (RA). Previously, we identified an IL‐15 antagonist peptide named [K6T]P8, with potential therapeutic application in RA. In the current work, the metabolic stability of this peptide in synovial fluids from RA patients was studied. Moreover, [K6T]P8 peptide was labeled with 99mTc to investigate its stability in human plasma and its biodistribution pattern in healthy rats. The biological activity of [K6T]P8 peptide and its dimer was evaluated in CTLL‐2 cells, using 3 different additives to improve the solubility of these peptides. The half‐life of [K6T]P8 in human synovial fluid was 5.88 ± 1.73 minutes, and the major chemical modifications included peptide dimerization, cysteinylation, and methionine oxidation. Radiolabeling of [K6T]P8 with 99mTc showed a yield of approximately 99.8%. The 99mTc‐labeled peptide was stable in a 30‐fold molar excess of cysteine and in human plasma, displaying a low affinity to plasma proteins. Preliminary biodistribution studies in healthy Wistar rats suggested a slow elimination of the peptide through the renal and hepatic pathways. Although citric acid, sucrose, and Tween 80 enhanced the solubility of [K6T]P8 peptide and its dimer, only the sucrose did not interfere with the in vitro proliferation assay used to assess their biological activity. The results here presented, reinforce nonclinical characterization of the [K6T]P8 peptide, a potential agent for the treatment of RA and other diseases associated with IL‐15 overexpression.  相似文献   

12.
Vasoactive intestinal peptide (VIP), a neuropeptide present in the lymphoid microenvironment, acts as a potent anti-inflammatory agent that inhibits the function of activated macrophages. VIP was shown to inhibit IL-6, TNFalpha, IL-12, chemokine, and nitric oxide production in endotoxin-activated macrophages. The present study reports the effect of VIP on IL-8 production by stimulated human monocytes. VIP inhibits IL-8 production in a dose- and time-dependent manner at the mRNA level. The specific VPAC1 receptor mediates the inhibitory effect of VIP. Two transduction pathways appear to be involved, a major cAMP-independent pathway and a secondary cAMP-dependent pathway. Of obvious physiological significance is the fact that VIP, presumably through the inhibition of IL-8 production, dramatically reduces the monocyte-induced neutrophil chemotaxis, an important event in the pathogenesis of several inflammatory and autoimmune disorders. These findings support the proposed role of VIP as a key endogenous anti-inflammatory agent and describe a novel mechanism, i.e., the inhibition of the production of monocyte-derived IL-8.  相似文献   

13.
Fusion expression provides an effective means for the biosynthesis of longer peptides in Escherichia coli. However, the commonly used fusion tags are primarily suitable for laboratory scale applications due to the high cost of commercial affinity resins. Herein, a novel approach exploiting hirudin as a multipurpose fusion tag in combination with tobacco etch virus (TEV) protease cleavage has been developed for the efficient and cost-effective production of a 43-amino acid model peptide lunasin in E. coli at preparative scale. A fusion gene which allows for lunasin to be N-terminally fused to the C-terminus of hirudin through a flexible linker comprising a TEV protease cleavage site was designed and cloned in a secretion vector pTASH. By cultivation in a 7-L bioreactor, the fusion protein was excreted into the culture medium at a high yield of ~380?mg/L, which was conveniently recovered and purified by inexpensive HP20 hydrophobic chromatography at a recovery rate of ~80%. After polishing and cleavage with TEV protease, the finally purified lunasin was obtained with ≥95% purity and yield of ~86?mg/L culture medium. Conclusively, this hirudin tagging strategy is powerful in the production of lunasin and could be applicable for the production of other peptides at preparative scale.  相似文献   

14.
Lunasin is a 43 amino acid peptide with anti-cancer, antioxidant, anti-inflammatory and cholesterol-lowering properties. Although the mechanism of action of lunasin has been characterized to some extent, its exact three-dimensional structure as well as the function of the N-terminal sequence remains unknown. We established a novel method for the production of recombinant lunasin that allows efficient isotope labeling for NMR studies. Initial studies showed that lunasin can exist in a reduced or oxidized state with an intramolecular disulfide bond depending on solution conditions. The structure of both forms of the peptide at pH 3.5 and 6.5 was characterized by CD spectroscopy and multidimensional NMR methods. The data indicate that lunasin belongs to the class of intrinsically disordered proteins. The analysis of secondary structure propensities indicates the presence of two helical regions and an extended (beta strand) conformation at the C-terminus. We hypothesize that the transient secondary structure elements could be stabilized upon interaction with the histones H3 and H4. The newly discovered redox properties of lunasin could explain its antioxidant and anti-inflammatory activity.  相似文献   

15.
Avian influenza viruses (AIV), the causative agent of avian flu or bird flu, cause widespread morbidity and mortality in poultry. The symptoms of the disease range from mild flu like symptoms to death. These viruses possess two important surface glycoproteins, namely hemagglutinin (HA) and neuraminidase (NA) against which neutralizing antibodies are produced. Due to the highly mutative nature of the genes which encode these proteins, the viruses often confer resistance to the current anti-viral drugs making the prevention and treatment of infection challenging. In our laboratory, we have recently identified a novel anti-viral peptide (P1) against the AIV H9N2 from a phage displayed peptide library. This peptide inhibits the replication of the virus in ovo and in vitro by its binding to the HA glycoprotein. In the current study, we demonstrate that the peptide inhibits the virus replication by preventing the attachment to the host cell but it does not have any effect on the viral fusion. The reduction in the viral nucleoprotein (NP) expression inside the host cell has also been observed during the peptide (P1) treatment. This novel peptide may have the potential to be developed as a therapeutic agent for the treatment and control of avian influenza virus H9N2 infections.  相似文献   

16.
In this study, vasoactive intestinal peptide (VIP) is shown to inhibit substrate adherence capacity of rat peritoneal macrophages. The inhibitory response occurred in the 0.1-1, 000 nM range of VIP concentrations and it was a time-dependent process. At 15 min, half maximal inhibition (ICw) was obtained at 0.37 ± 0.26 nM and maximal inhibition (53.8%) at 10?6 M VIP. The inhibitory effect of VIP was correlated with the stimulation by this peptide of cyclic AMP (cAMP) production in rat peritoneal macrophages. Moreover, agents that inhibited VIP-stimulated cAMP production, such as the VIP-antagonist [4-Cl-D-Phe6 Leu17]-VIP and somatostatin, also decreased the inhibitory effect of VIP on substrate adherence capacity of macrophages. On the contrary, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the lipid-soluble derivative of cAMP N6 2′-O-dibutyryl cAMP (Bu-cAMP) inhibited the adherence of macrophages to substrate and potentiated the inhibitory action of VIP. These results demonstrate that VIP inhibits substrate adherence capacity of rat peritoneal macrophages by a mechanism that involves cAMP, and show, for the first time, an action of VIP on the function of peritoneal macrophages.  相似文献   

17.
In this study, vasoactive intestinal peptide (VIP) is shown to inhibit substrate adherence capacity of rat peritoneal macrophages. The inhibitory response occurred in the 0.1-1, 000 nM range of VIP concentrations and it was a time-dependent process. At 15 min, half maximal inhibition (ICw) was obtained at 0.37 ± 0.26 nM and maximal inhibition (53.8%) at 10-6 M VIP. The inhibitory effect of VIP was correlated with the stimulation by this peptide of cyclic AMP (cAMP) production in rat peritoneal macrophages. Moreover, agents that inhibited VIP-stimulated cAMP production, such as the VIP-antagonist [4-Cl-D-Phe6 Leu17]-VIP and somatostatin, also decreased the inhibitory effect of VIP on substrate adherence capacity of macrophages. On the contrary, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and the lipid-soluble derivative of cAMP N6 2'-O-dibutyryl cAMP (Bu-cAMP) inhibited the adherence of macrophages to substrate and potentiated the inhibitory action of VIP. These results demonstrate that VIP inhibits substrate adherence capacity of rat peritoneal macrophages by a mechanism that involves cAMP, and show, for the first time, an action of VIP on the function of peritoneal macrophages.  相似文献   

18.
Lunasin is a novel peptide with great potential as a nontoxic chemopreventive drug. This compound might account for part of the anticancer effects reported from studies with soybean(Glycine max). We studied its isolation, purification and biological assay, and observed that both its band from soybean and one from synthetic lunasin were <5 kD in their molecular weights. Among all the crop varieties tested, only the soybean produced a lunasin band on our western blot. Levels of this peptide ranged from 0.045 mg per gram of seed for the Hanbatkong cultivar to 0.156 mg per gram seed for Poolunkong’. The effect on colony formation by lunasin from different soybean extracts was significantly higher than for either the positive control or the synthetic lunasin. When lunasin was present in those natural extracts, histone acetylation decreased 100% compared with cells that were treated with Na-butyrate.  相似文献   

19.
Availability of the common precursor arachidonic acid represents the fundamental prerequisite of the cellular eicosanoid synthesis. The amount of free arachidonic acid is regulated not only by phospholipases, which liberate this polyunsaturated fatty acid from lipid pools, but also by the reacylating enzyme acylCoA:lysophosphatide acyltransferase. We have previously shown (Goppelt-Strübe, G., C.-F. Körner, G. Hausmann, D. Gemsa, and K. Resch. Control of Prostanoid Synthesis: Role of Reincorporation of Released Precursor Fatty Acids. Prostaglandins : 373. 1986.) that the organic mercury compound thimerosal in murine peritoneal macrophages inhibits arachidonic acid reincorporation into cellular lipids, thereby leading to an enhanced prostanoid synthesis. In this report we show that the production of leukotriene C4 was also increased after the addition of thimerosal to mouse peritoneal macrophages in a time and dose dependent manner. Concomitantly, thimerosal led to a significant rise of the intracellular calcium concentration as measured by fura-2 fluorescence. Simultaneous addition of thimerosal and indomethacin or exogeneous arachidonic acid to the cells resulted in a synergistic enhancement of leukotriene C4 synthesis. On the other hand, another sulfhydryl group blocking agent, ethacrynic acid, was found to be ineffective in increasing leukotriene C4 levels even in combination with exogeneous arachidonic acid. Thimerosal therefore provides a helpful tool in studying the basic regulatory mechanisms of the cellular leukotriene synthesis.  相似文献   

20.
A synthetic peptide containing env amino acid (aa) sequence 581 to 597 of the transmembrane protein gp41 of human immunodeficiency virus type 1 (HIV-1) was tested for its effect on protein kinase C (PKC) and cytoplasmic free Ca2+ [( Ca2+]i) influx-dependent immune functions. We have previously shown that this peptide inhibits PKC-mediated phosphorylation and T-cell receptor-mediated [Ca2+]i influx as well as lymphoproliferation. In this study we demonstrate that the HIV-1 gp41 peptide aa581-597 inhibits lymphoproliferation stimulated via the distinct T-cell-activation molecules CD3, CD2, and CD28, as well as direct stimulation mediated by phorbol ester combined with ionomycin. Further, aa581-597 inhibits both PKC-dependent interleukin 2 (IL 2) production and the [Ca2+]i influx-dependent but PKC-independent induction of IL 2 receptor expression. The HIV-1 gp41 peptide also induces dramatic morphologic changes in lymphocytes, characterized by cytoplasmic ballooning and the acquisition of adherence to plastic, and these changes are dependent on both the length and the temperature of exposure. The results of this study suggest that the HIV-1 gp41 sequence aa581-597 acts at multiple sites to inhibit both PKC activity and [Ca2+]i influx, resulting in the abrogation of several distinct immune functions that are critical for an intact immune response and are defective in HIV-1-infected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号