首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In contrast to the vast majority of cellular proteins, rotavirus proteins are translated from capped but nonpolyadenylated mRNAs. The viral nonstructural protein NSP3 specifically binds the 3'-end consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G. Here we show that expression of NSP3 in mammalian cells allows the efficient translation of virus-like mRNA. A synergistic effect between the cap structure and the 3' end of rotavirus mRNA was observed in NSP3-expressing cells. The enhancement of viral mRNA translation by NSP3 was also observed in a rabbit reticulocyte lysate translation system supplemented with recombinant NSP3. The use of NSP3 mutants indicates that its RNA- and eIF4G-binding domains are both required to enhance the translation of viral mRNA. The results reported here show that NSP3 forms a link between viral mRNA and the cellular translation machinery and hence is a functional analogue of cellular poly(A)-binding protein.  相似文献   

2.
Initiation is the rate-limiting step in protein synthesis and therefore an important target for regulation. For the initiation of translation of most cellular mRNAs, the cap structure at the 5' end is bound by the translation factor eukaryotic initiation factor 4E (eIF4E), while the poly(A) tail, at the 3' end, is recognized by the poly(A)-binding protein (PABP). eIF4G is a scaffold protein that brings together eIF4E and PABP, causing the circularization of the mRNA that is thought to be important for an efficient initiation of translation. Early in infection, rotaviruses take over the host translation machinery, causing a severe shutoff of cell protein synthesis. Rotavirus mRNAs lack a poly(A) tail but have instead a consensus sequence at their 3' ends that is bound by the viral nonstructural protein NSP3, which also interacts with eIF4GI, using the same region employed by PABP. It is widely believed that these interactions lead to the translation of rotaviral mRNAs, impairing at the same time the translation of cellular mRNAs. In this work, the expression of NSP3 in infected cells was knocked down using RNA interference. Unexpectedly, under these conditions the synthesis of viral proteins was not decreased, while the cellular protein synthesis was restored. Also, the yield of viral progeny increased, which correlated with an increased synthesis of viral RNA. Silencing the expression of eIF4GI further confirmed that the interaction between eIF4GI and NSP3 is not required for viral protein synthesis. These results indicate that NSP3 is neither required for the translation of viral mRNAs nor essential for virus replication in cell culture.  相似文献   

3.
Groft CM  Burley SK 《Molecular cell》2002,9(6):1273-1283
Rotaviruses, segmented double-stranded RNA viruses, co-opt the eukaryotic translation machinery with the aid of nonstructural protein 3 (NSP3), a rotaviral functional homolog of the cellular poly(A) binding protein (PABP). NSP3 binds to viral mRNA 3' consensus sequences and circularizes mRNA via interactions with eIF4G. Here, we present the X-ray structure of the C-terminal domain of NSP3 (NSP3-C) recognizing a fragment of eIF4GI. Homodimerization of NSP3-C yields a symmetric, elongated, largely alpha-helical structure with two hydrophobic eIF4G binding pockets at the dimer interface. Site-directed mutagenesis and isothermal titration calorimetry documented that NSP3 and PABP use analogous eIF4G recognition strategies, despite marked differences in tertiary structure.  相似文献   

4.
Rotavirus nonstructural protein NSP3 interacts specifically with the 3′ end of viral mRNAs, with the eukaryotic translation initiation factor eIF4G, and with RoXaN, a cellular protein of yet-unknown function. By evicting cytoplasmic poly(A) binding protein (PABP-C1) from translation initiation complexes, NSP3 shuts off the translation of cellular polyadenylated mRNAs. We show here that PABP-C1 evicted from eIF4G by NSP3 accumulates in the nucleus of rotavirus-infected cells. Through modeling of the NSP3-RoXaN complex, we have identified mutations in NSP3 predicted to interrupt its interaction with RoXaN without disturbing the NSP3 interaction with eIF4G. Using these NSP3 mutants and a deletion mutant unable to associate with eIF4G, we show that the nuclear localization of PABP-C1 not only is dependent on the capacity of NSP3 to interact with eIF4G but also requires the interaction of NSP3 with a specific region in RoXaN, the leucine- and aspartic acid-rich (LD) domain. Furthermore, we show that the RoXaN LD domain functions as a nuclear export signal and that RoXaN tethers PABP-C1 with RNA. This work identifies RoXaN as a cellular partner of NSP3 involved in the nucleocytoplasmic localization of PABP-C1.  相似文献   

5.
Rotaviruses, the cause of life-threatening diarrhea in humans and cattle, utilize a functional homolog of poly(A) binding protein (PABP) known as nonstructural protein 3 (NSP3) for translation of viral mRNAs. NSP3 binds to viral mRNA 3' consensus sequences and circularizes the mRNA via interactions with eIF4G. The X-ray structure of the NSP3 RNA binding domain bound to a rotaviral mRNA 3' end has been determined. NSP3 is a novel, heart-shaped homodimer with a medial RNA binding cleft. The homodimer is asymmetric, and contains two similar N-terminal segments plus two structurally different C-terminal segments that intertwine to create a tunnel enveloping the mRNA 3' end. Biophysical studies demonstrate high affinity binding leading to increased thermal stability and slow dissociation kinetics, consistent with NSP3 function.  相似文献   

6.
The infection of baby hamster kidney (BHK) cells by Sindbis virus gives rise to a drastic inhibition of cellular translation, while under these conditions the synthesis of viral structural proteins directed by the subgenomic 26S mRNA takes place efficiently. Here, the requirement for intact initiation factor eIF4G for the translation of this subgenomic mRNA has been examined. To this end, SV replicons that contain the protease of human immunodeficiency virus type 1 (HIV-1) or the poliovirus 2A(pro) replacing the sequences of SV glycoproteins have been constructed. BHK cells electroporated with the different RNAs synthesize protein C and the corresponding protease at late times. Notably, the proteolysis of eIF4G by both proteases has little effect on the translation of the 26S mRNA. In addition, recombinant viable SVs were engineered that encode HIV-1 PR or poliovirus 2A protease under the control of a duplicated late promoter. Viral protein synthesis at late times of infection by the recombinant viruses is slightly affected in BHK cells that contain proteolysed eIF4G. The translatability of SV genomic 49S mRNA was assayed in BHK cells infected with a recombinant virus that synthesizes luciferase and transfected with a replicon that expresses poliovirus 2Apro. Under conditions where eIF4G has been hydrolysed significantly the translation of genomic SV RNA was deeply inhibited. These findings indicate a different requirement for intact eIF4G in the translation of genomic and subgenomic SV mRNAs. Finally, the translation of the reporter gene that encodes green fluorescent protein, placed under the control of a second duplicate late promoter, is also resistant to the cleavage of eIF4G. In conclusion, despite the presence of a cap structure in the 5' end of the subgenomic SV mRNA, intact eIF4G is not necessary for its translation.  相似文献   

7.
M Piron  P Vende  J Cohen    D Poncet 《The EMBO journal》1998,17(19):5811-5821
Most eukaryotic mRNAs contain a 5'cap structure and a 3'poly(A) sequence that synergistically increase the efficiency of translation. Rotavirus mRNAs are capped, but lack poly(A) sequences. During rotavirus infection, the viral protein NSP3A is bound to the viral mRNAs 3' end. We looked for cellular proteins that could interact with NSP3A, using the two-hybrid system in yeast. Screening a CV1 cell cDNA library allowed us to isolate a partial cDNA of the human eukaryotic initiation factor 4GI (eIF4GI). The interaction of NSP3A with eIF4GI was confirmed in rotavirus infected cells by co-immunoprecipitation and in vitro with NSP3A produced in Escherichia coli. In addition, we show that the amount of poly(A) binding protein (PABP) present in eIF4F complexes decreases during rotavirus infection, even though eIF4A and eIF4E remain unaffected. PABP is removed from the eIF4F complex after incubation in vitro with the C-terminal part of NSP3A, but not with its N-terminal part produced in E.coli. These results show that a physical link between the 5' and the 3' ends of mRNA is necessary for the efficient translation of viral mRNAs and strongly support the closed loop model for the initiation of translation. These results also suggest that NSP3A, by taking the place of PABP on eIF4GI, is responsible for the shut-off of cellular protein synthesis.  相似文献   

8.
Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3' consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.  相似文献   

9.
10.
Survivin is a protein which functions as a mitotic regulator as well as apoptosis inhibitor. In this study, we show that introduction of synthetic miR-542-3p mimetic reduced both mRNA and protein levels of survivin. In A549 cells, luciferase reporter assay revealed that miR-542-3p targeted predicted binding sites in the 3′-untranslated region (3′-UTR) of survivin. We also demonstrate that ectopic expression of miR-542-3p inhibited cell proliferation by inducing Gap 1 (G1) and Gap 2/Mitosis (G2/M) cell cycle arrest. Collectively, these results suggest that survivin is a direct target of miR-542-3p and growth inhibition by miR-542-3p may have a potential utility as an anti-cancer therapy.  相似文献   

11.
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.  相似文献   

12.
13.
Eukaryotic translation initiation factor 4A (eIF4A) is a DEAD-box protein that participates in translation initiation. As an ATP-dependent RNA helicase, it is thought to resolve secondary structure elements from the 5′-untranslated region of mRNAs to enable ribosome scanning. The RNA-stimulated ATPase and ATP-dependent helicase activities of eIF4A are enhanced by auxiliary proteins, but the underlying mechanisms are still largely unknown. Here, we have dissected the effect of eIF4B and eIF4G on eIF4A RNA-dependent ATPase- and RNA helicase activities and on eIF4A conformation. We show for the first time that yeast eIF4B, like its mammalian counterpart, can stimulate RNA unwinding by eIF4A, although it does not affect the eIF4A conformation. The eIF4G middle domain enhances this stimulatory effect and promotes the formation of a closed eIF4A conformation in the presence of ATP and RNA. The closed state of eIF4A has been inferred but has not been observed experimentally before. eIF4B and eIF4G jointly stimulate ATP hydrolysis and RNA unwinding by eIF4A and favor the formation of the closed eIF4A conformer. Our results reveal distinct functions of eIF4B and eIF4G in synergistically stimulating the eIF4A helicase activity in the mRNA scanning process.  相似文献   

14.
Picornavirus proteases cleave translation initiation factor eIF4G into a C-terminal two-thirds fragment (hereafter named p100) and an N-terminal one-third fragment, which interacts with the cap-binding factor eIF4E. As the timing of this cleavage correlates broadly with the shut-off of host cell protein synthesis in infected cells, a very widespread presumption has been that p100 cannot support capped mRNA translation. Through the use of an eIF4G-depleted reticulocyte lysate system, we show that this presumption is incorrect. Moreover, recombinant p100 can also reverse the inhibition of capped mRNA translation caused either by m7GpppG cap analogue, by 4E-BP1, which sequesters eIF4E and thus blocks its association with eIF4G, or by cleavage of endogenous eIF4G by picornavirus proteases. The concentration of p100 required for maximum translation of capped mRNAs is approximately 4-fold higher than the endogenous eIF4G concentration in reticulocyte lysates. Our results imply that picornavirus-induced shut-off is not due to an intrinsic inability of p100 to support capped mRNA translation, but to the viral RNA outcompeting host cell mRNA for the limiting concentration of p100.  相似文献   

15.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

16.
Cytolytic viruses abrogate host protein synthesis to maximize the translation of their own mRNAs. In this study, we analyzed the eukaryotic initiation factor (eIF) 4G requirement for translation of vesicular stomatitis virus (VSV) and vaccinia virus (VV) mRNAs in HeLa cells using two different strategies: eIF4G depletion by small interfering RNAs or cleavage of eIF4G by expression of poliovirus 2A protease. Depletion of eIF4GI or eIF4GII moderately inhibits cellular protein synthesis, whereas silencing of both factors has only a slightly higher effect. Under these conditions, the extent of VSV protein synthesis is similar to that of nondepleted control cells, whereas VV expression is substantially reduced. Similar results were obtained when eIF4E was depleted. On the other hand, eIF4G cleavage by poliovirus 2A protease strongly inhibits translation of VV protein expression, whereas translation directed by VSV mRNAs is not abrogated, even though VSV mRNAs are capped. Therefore, the requirement for eIF4F activity is different for VV and VSV, suggesting that the molecular mechanism by which their mRNAs initiate their translation is also different. Consistent with these findings, eIF4GI does not colocalize with ribosomes in VSV-infected cells, while eIF2α locates at perinuclear sites coincident with ribosomes.  相似文献   

17.
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)–activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.  相似文献   

18.
Early during the infection process, rotavirus causes the shutoff of cell protein synthesis, with the nonstructural viral protein NSP3 playing a vital role in the phenomenon. In this work, we have found that the translation initiation factor 2α (eIF2α) in infected cells becomes phosphorylated early after virus infection and remains in this state throughout the virus replication cycle, leading to a further inhibition of cell protein synthesis. Under these restrictive conditions, however, the viral proteins and some cellular proteins are efficiently translated. The phosphorylation of eIF2α was shown to depend on the synthesis of three viral proteins, VP2, NSP2, and NSP5, since in cells in which the expression of any of these three proteins was knocked down by RNA interference, the translation factor was not phosphorylated. The modification of this factor is, however, not needed for the replication of the virus, since mutant cells that produce a nonphosphorylatable eIF2α sustained virus replication as efficiently as wild-type cells. In uninfected cells, the phosphorylation of eIF2α induces the formation of stress granules, aggregates of stalled translation complexes that prevent the translation of mRNAs. In rotavirus-infected cells, even though eIF2α is phosphorylated these granules are not formed, suggesting that the virus prevents the assembly of these structures to allow the translation of its mRNAs. Under these conditions, some of the cellular proteins that form part of these structures were found to change their intracellular localization, with some of them having dramatic changes, like the poly(A) binding protein, which relocates from the cytoplasm to the nucleus in infected cells, a relocation that depends on the viral protein NSP3.  相似文献   

19.
Host factors are required for efficient HIV-1 replication. To identify these factors, genome-wide RNA interference screening was performed using a human T cell line. In the present study, we assessed whether eukaryotic translation initiation factor 4A isoform 2 (eIF4A2), a DEAD-box protein identified in our screen, is necessary for efficient HIV-1 replication. Exploiting MT4C5 cells depleted of eIF4A2 by stable expression of eIF4A2-specific short-hairpin RNA (shRNA) using a lentiviral system, we found that depletion of eIF4A2 markedly inhibited the infection of a replication-competent reporter HIV-1. eIF4A2 depletion reduced the efficiency of viral cDNA synthesis with virion entry into target cells being unaffected. Depletion of eIF4A2 also inhibited HIV-1 spreading infection in a knockdown level-dependent manner. These results suggest that HIV-1 requires eIF4A2 for optimal replication in human T cells.  相似文献   

20.
Recruitment of mRNA to the 40S ribosomal subunit requires the coordinated interaction of a large number of translation initiation factors. In mammals, the direct interaction between eukaryotic initiation factor 4G (eIF4G) and eIF3 is thought to act as the molecular bridge between the mRNA cap-binding complex and the 40S subunit. A discrete ∼90 amino acid domain in eIF4G is responsible for binding to eIF3, but the identity of the eIF3 subunit(s) involved is less clear. The eIF3e subunit has been shown to directly bind eIF4G, but the potential role of other eIF3 subunits in stabilizing this interaction has not been investigated. It is also not clear if the eIF4A helicase plays a role in stabilizing the interaction between eIF4G and eIF3. Here, we have used a fluorescence anisotropy assay to demonstrate that eIF4G binds to eIF3 independently of eIF4A binding to the middle region of eIF4G. By using a site-specific cross-linking approach, we unexpectedly show that the eIF4G-binding surface in eIF3 is comprised of the -c, -d and -e subunits. Screening multiple cross-linker positions reveals that eIF4G contains two distinct eIF3-binding subdomains within the previously identified eIF3-binding domain. Finally, by employing an eIF4G-dependent translation assay, we establish that both of these subdomains are required for efficient mRNA recruitment to the ribosome and stimulate translation. Our study reveals unexpected complexity to the eIF3-eIF4G interaction that provides new insight into the regulation of mRNA recruitment to the human ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号