首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.  相似文献   

2.
Hu antigen R (HuR) regulates stress responses through stabilizing and/or facilitating the translation of target mRNAs. The human TRA2β gene encodes splicing factor transformer 2β (Tra2β) and generates 5 mRNA isoforms (TRA2β1 to -5) through alternative splicing. Exposure of HCT116 colon cancer cells to sodium arsenite stimulated checkpoint kinase 2 (Chk2)- and mitogen-activated protein kinase p38 (p38MAPK)-mediated phosphorylation of HuR at positions S88 and T118. This induced an association between HuR and the 39-nucleotide (nt) proximal region of TRA2β exon 2, generating a TRA2β4 mRNA that includes exon 2, which has multiple premature stop codons. HuR knockdown or Chk2/p38MAPK double knockdown inhibited the arsenite-stimulated production of TRA2β4 and increased Tra2β protein, facilitating Tra2β-dependent inclusion of exons in target pre-mRNAs. The effects of HuR knockdown or Chk2/p38MAPK double knockdown were also confirmed using a TRA2β minigene spanning exons 1 to 4, and the effects disappeared when the 39-nt region was deleted from the minigene. In endogenous HuR knockdown cells, the overexpression of a HuR mutant that could not be phosphorylated (with changes of serine to alanine at position 88 [S88A], S100A, and T118A) blocked the associated TRA2β4 interaction and TRA2β4 generation, while the overexpression of a phosphomimetic HuR (with mutations S88D, S100D, and T118D) restored the TRA2β4-related activities. Our findings revealed the potential role of nuclear HuR in the regulation of alternative splicing programs under oxidative stress.  相似文献   

3.
The MYCC (c-MYC) gene is amplified in 30–60% of human ovarian cancers. We assessed the functional significance of MYCC amplification by siRNA inhibition of MYCC or MYC paralogs in a panel of ovarian cancer cell lines expressing varying levels of MYCC. Inactivation of MYCC inhibited cell proliferation and induced replicative senescence only in lines with amplified MYCC, indicating that these cells are addicted to continued MYCC overexpression. In contrast, siRNA knockdown of all three MYC isoforms inhibited proliferation of MYCC non-amplified ovarian cancer cells without inducing replicative senescence, and did not inhibit the proliferation of telomerase-immortalized ovarian surface epithelial cells. The arrest induced by MYCC knockdown was accompanied by an increase in the level of the Cdk inhibitor p27Kip1 and a decrease in cyclin A expression and Cdk2 activity, and could be reversed by RNAi knockdown of p27Kip1 or Rb, or by overexpression of cyclin A/Cdk2. The arrest induced by knockdown of all three MYC isoforms could similarly be reversed by p27Kip1 knockdown. Our findings indicate that the addiction of MYCC-amplified ovarian cancer cells to MYCC differs from the dependence of MYCC non-amplified cancer cells on MYC paralogs, but both are mediated, at least in part, by p27Kip1. They also suggest that growth of ovarian cancers may be blocked by inhibition of MYCC or MYC paralogs.  相似文献   

4.
NUF2 (NUF2, Ndc80 kinetochore complex component) plays an important role in kinetochore-microtubule attachment. It has been reported that NUF2 is associated with multiple human cancers. However, the functional role of NUF2 in pancreatic cancer remains unclear. In this study, we found that NUF2 expression was stronger in tumour tissues than in normal pancreatic tissues, and its overexpression could be related to poor prognosis. Moreover, NUF2 was highly expressed in several human pancreatic cancer cell lines. We took advantage of lentivirus-mediated siRNA (small interfering RNA) to suppress NUF2 expression in PANC-1 and Sw1990 cell lines aiming to investigate the role of NUF2 in pancreatic cancer. NUF2 silencing by RANi (RNA interference) reduced the proliferation and colony formation ability of pancreatic cancer cells in vitro. Cell cycle analysis showed that NUF2 knockdown induced cell cycle arrest at G0/G1 phase via suppression of Cyclin B1, Cdc2 and Cdc25A. More importantly, NUF2 silencing was able to alleviate in vivo tumourigenesis in pancreatic cancer xenograft nude mice. Collectively, the present study indicates that the siRNA-mediated knockdown against NUF2 may be a promising therapeutic method for the treatment of pancreatic cancer.  相似文献   

5.

Aims

The hedgehog signaling pathway plays an important role in EMT of pancreatic cancer cells, but the precise mechanisms remain elusive. Because S100A4 as a key EMT moleculer marker was found to be upregulated upon Gli1 in pancreatic cancer cells, we focused on the relationship between Shh-Gli1 signals and S100 genes family.

Methods

On the base of cDNA microarray data, we investigated regulating mechanism of Gli1 to some members of S100A genes family in pancreatic cancer cell lines firstly. Then, the regulation of Gli1 to S100A4 gene was studied by molecular biology assays and the pro-metastasis effection of Gli1-dependent S100A4 was investigated in vitro. Finally, the expressions of Shh, Gli1, S100A4 and E-cadherin in pancreatic cancer tissues were studied by using immunohistochemistry assays.

Results

Five members of the S100 genes family, S100A2, S100A4, S100A6, S100A11, and S100A14 were found to be downregulated significantly upon Gli1 knockdown. Gli1 enhancer prediction combining with in vitro data demonstrated that Gli1 primarily regulates S100A family members via cis-acting elements. Indeed, the data indicate S100A4 and vimentin genes were upregulated significantly by Shh/Gli1-expression increasing and E-cadherin was significantly reduced at the same time. Migration of PC cells was increased significantly in a dose-dependent manner of Gli1 expression (P<0.05) and siS100A4 significantly reversed the response of PC cells induced by L-Shh transduction (P<0.01).

Conclusion

Our data establish a novel connection between Shh-Gli1 signaling and S100A4 regulation, which imply that S100A4 might be one of the key factors in EMT mediated by Shh-Gli1 signaling in pancreatic cancer.  相似文献   

6.
7.
Epithelial-mesenchymal transition (EMT) is considered as the key mechanism involved in cancer metastasis. Several studies showed that various cell membrane calcium channels play different roles in cancer metastasis. In the present study, the potential role of ATPase plasma membrane Ca2+ transporting 4 (PMCA4) in regulating EMT in gastric cancer (GC) was investigated. GC patients who underwent radical surgery were enrolled in this study. In vitro human GC cell lines MKN45 and NCI-N87 were used, and MKN45 cells were injected in nude mice to evaluate tumor development. Our results showed that low PMCA4 expression was associated with advanced TNM stage and poor prognosis in GC patients. Knockdown of PMCA4 suppressed E-cadherin, grainyhead like 2 (GRHL2) and ovo-like 1 (OVOL1) expression, up-regulated vimentin expression, increased migration and invasion ability, and promoted the resistance to cytotoxic drug. Furthermore, GC cells displayed an elongated fibroblastoid morphology when PMCA4 was knockdown. PMCA4 overexpression resulted in an up-regulated E-cadherin expression and decreased migration and invasion ability. In vivo metastasis assay showed that PMCA4 overexpression resulted in a decreased incidence of lung metastasis. PMCA4 inhibition increased ZEB1 expression and nuclear accumulation of nuclear factor of activated T-cell isoform c1 (NFATc1). EMT induced by PMCA4 inhibition could be prevented by the knockdown of NFATc1 or ZEB1. In addition, cyclosporine A prevented EMT induced by PMCA4 inhibition by suppressing the NFATc1-ZEB1 pathway. Our data identified a novel mechanism in the regulation of EMT in GC, and provided a novel target in the treatment of EMT subtype in GC.  相似文献   

8.

Background

Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.

Methods

The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.

Results

Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.

Conclusions

We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.  相似文献   

9.
10.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   

11.
Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.  相似文献   

12.
S100B is a prognostic marker for malignant melanoma. Increasing S100B levels are predictive of advancing disease stage, increased recurrence, and low overall survival in malignant melanoma patients. Using S100B overexpression and shRNAS100B knockdown studies in melanoma cell lines, elevated S100B was found to enhance cell viability and modulate MAPK signaling by binding directly to the p90 ribosomal S6 kinase (RSK). S100B-RSK complex formation was shown to be Ca2+-dependent and to block ERK-dependent phosphorylation of RSK, at Thr-573, in its C-terminal kinase domain. Additionally, the overexpression of S100B sequesters RSK into the cytosol and prevents it from acting on nuclear targets. Thus, elevated S100B contributes to abnormal ERK/RSK signaling and increased cell survival in malignant melanoma.  相似文献   

13.
14.
We previously reported a novel positive feedback loop between thioredoxin‐1 (Trx‐1) and S100P, which promotes the invasion and metastasis of colorectal cancer (CRC). However, the underlying molecular mechanisms remain poorly understood. In this study, we examined the roles of Trx‐1 and S100P in CRC epithelial‐to‐mesenchymal transition (EMT) and their underlying mechanisms. We observed that knockdown of Trx‐1 or S100P in SW620 cells inhibited EMT, whereas overexpression of Trx‐1 or S100P in SW480 cells promoted EMT. Importantly, S100A4 and the phosphorylation of AKT were identified as potential downstream targets of Trx‐1 and S100P in CRC cells. Silencing S100A4 or inhibition of AKT phosphorylation eliminated S100P‐ or Trx‐1‐mediated CRC cell EMT, migration and invasion. Moreover, inhibition of AKT activity reversed S100P‐ or Trx‐1‐induced S100A4 expression. The expression of S100A4 was higher in human CRC tissues compared with their normal counterpart tissues and was significantly correlated with lymph node metastasis and poor survival. The overexpression of S100A4 protein was also positively correlated with S100P or Trx‐1 protein overexpression in our cohort of CRC tissues. In addition, overexpression of S100P reversed the Trx‐1 knockdown‐induced inhibition of S100A4 expression, EMT and migration and invasion in SW620 cells. The data suggest that interplay between Trx‐1 and S100P promoted CRC EMT as well as migration and invasion by up‐regulating S100A4 through AKT activation, thus providing further potential therapeutic targets for suppressing the EMT in metastatic CRC.  相似文献   

15.
Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.  相似文献   

16.
Pancreatic cancer, the fourth leading cause of cancer-related death in the United States, is resistant to current chemotherapies. Therefore, identification of different pathways of cell death is important to develop novel therapeutics. Our previous study has shown that triptolide, a diterpene triepoxide, inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. However, the mechanism by which triptolide kills pancreatic cancer cells was not known, hence, this study aimed at elucidating it. Our study reveals that triptolide kills diverse types of pancreatic cancer cells by two different pathways; it induces caspase-dependent apoptotic death in some cell lines and death via a caspase-independent autophagic pathway in the other cell lines tested. Triptolide-induced autophagy requires autophagy-specific genes, atg5 or beclin 1 and its inhibition results in cell death via the apoptotic pathway, whereas inhibition of both autophagy and apoptosis rescues triptolide-mediated cell death. Our study shows for the first time that induction of autophagy by triptolide has a pro-death role in pancreatic cancer cells. Since triptolide kills diverse pancreatic cancer cells by different mechanisms, it makes an attractive chemotherapeutic agent for future use against a broad spectrum of pancreatic cancers.Key words: pancreatic cancer, triptolide, apoptosis, caspase-3Pancreatic adenocarcinoma is one of the most lethal human malignancies. It is the fourth leading cause of cancer-related death in the United States. The five-year survival rate for pancreatic cancer is estimated to be <5% due to its aggressive growth, metastasis and resistance to radiation and most systemic chemotherapies. Hence, efforts are ongoing to understand the pathobiology of pancreatic cancer to develop innovative and effective therapies against it. A promising candidate for future therapeutic use against pancreatic cancer is a diterpene triepoxide, triptolide. Our previous studies show that triptolide inhibits the growth of pancreatic cancer cells in vitro and prevents tumor growth in vivo. Since the mechanism by which triptolide kills pancreatic cancer cells was not known, we decided to elucidate it.The K-ras, p53, p16 and DPC4 genes are the most frequently altered genes in pancreatic adenocarcinoma. In this study we have used diverse pancreatic cancer cell lines, MiaPaCa-2, Capan-1, S2-013 and S2-VP10 cells, which have mutations in all the above-mentioned genes and BxPC-3 and Hs766T cells, which have mutations in the p53, p16 and DPC4 genes, but have a wild-type K-ras gene. The treatment of all the cell lines with triptolide results in a significant time- and dose-dependent decrease in cell viability, independent of cell cycle arrest. After treatment with triptolide, only MiaPaCa-2, Capan-1 and BxPC-3 cells show an increase in the apoptosis parameters: cytochrome c release from mitochondria into the cytosol, caspase-3 activation and phosphatidylserine externalization. In contrast to this, S2-013, S2-VP10 and Hs766T cells show an induction of autophagy: an increase in LC3-II levels (by immunoblotting and immufluorescence), increase in acridine orange-positive cells, inhibition of the PtdIns3K/Akt/mTOR pathway and induction of the ERK1/2 pathway. Also, none of the cell lines tested show necrosis as evidenced by the absence of the release of lactate dehydrogenase. These results indicate that triptolide induces apoptosis in MiaPaCa-2, Capan-1 and BxPC-3 cells, whereas it induces autophagy in S2-013, S2-VP10 and Hs766T cells.Since the role of autophagy in cancer was controversial we investigated whether triptolide-induced autophagy has a prosurvival or a pro-death role. As autophagy-associated cell death is independent of caspase-3, we tested the effect of triptolide on pancreatic cancer cells in the absence of caspase-3. Treatment of cells with triptolide post-caspase-3 knockdown shows a significant rescue of cell viability only in MiaPaCa-2, but not S2-013 or S2-VP10 cells. This indicates that in contrast to MiaPaCa-2, triptolide-mediated cell death in S2-013 and S2-VP10 cells is independent of caspase-3. Next, we tested the role of autophagy in triptolide-mediated cell death in pancreatic cancer cells. In spite of a knockdown of autophagy-specific genes (atg5 and beclin 1), treatment of S2-013 and S2-VP10 cells with triptolide show a significant decline in cell viability, which is comparable to the cells treated with triptolide in the presence of autophagy genes. Subsequently we show that death in the absence of autophagy-specific genes is due to the utilization of an alternate cell death pathway, apoptosis. Furthermore, in the absence of both autophagy-specific and apoptosis-specific genes, triptolide-mediated cell death is rescued in S2-013 and S2-VP10 cells. Thus, these results confirm that triptolide-induced autophagy has a pro-death role in S2-013 and S2-VP10 cells and that these cells do not have a defect in the apoptotic machinery; however, they respond to triptolide by activating the autophagic pathway instead of the apoptotic pathway. Our studies also reveal the presence of a crosstalk between the two cell death pathways, apoptosis and autophagy, in pancreatic cancer cells.In conclusion, our study shows for the first time that triptolide induces autophagy in pancreatic cancer cells. It sheds light on the fundamental question as to whether autophagy is protective or causes cell death, proving convincingly that induction of autophagy causes cell death of some pancreatic cancer cells. Although a basal level of autophagy is necessary to maintain cellular homeostasis, its prosurvival role can be switched into a cell death mechanism if the amplitude of autophagy increases above a threshold level which is incompatible with viability, as seen in S2-013, S2-VP10 and Hs766T cells after triptolide treatment. Furthermore, there exists a crosstalk between apoptosis and autophagy in S2-013 and S2-VP10 cells; either both pathways function independently to kill the cells, with autophagy being the preferred pathway or autophagy antagonizes apoptosis and hence apoptosis is seen only after inhibiting autophagy. Although there is no direct correlation between the selection of cell death pathway in response to triptolide and the genotype of the cell lines, the choice of autophagic cell death pathway could depend on the metastatic potential of the cells; S2-013, S2-VP10 and Hs766T cell lines being more metastatic than the others, which merits further investigation. In conclusion, the ability of triptolide to induce cell death in diverse pancreatic cancer cells by either mechanism makes it an attractive chemotherapeutic agent against a broad spectrum of pancreatic cancers.  相似文献   

17.
18.
19.
20.
The gene PNAS4 is a high conservative gene that shares high homology of sequence in various organisms from plants to animals. We found overexpression of human PNAS4 induced apoptosis and arrested cell cycle in S phase in A549 human lung adenocarcinoma cells. In C57BL/6 mice model of Lewis lung carcinoma, overexpression of mouse PNAS4 significantly suppressed tumor growth and prolonged survival time through induction of tumor cell apoptosis, exhibiting effective antitumor. Our original investigations in vitro and vivo indicated PNAS4 is a novel pro-apoptosis gene, which could be used as a potential target of cancer biotherapy in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号