首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A mouse myotube-derived cDNA encoding the Ca(2+)-dependent cell adhesion molecule M-cadherin was used to study the segregation of the corresponding gene Cdh3 in a mouse interspecific backcross. Cdh3 was found to be unlinked to the N-cadherin gene but linked to the E-cadherin (uvomorulin) locus on chromosome 8 in a region of conserved synteny with human chromosome 16q. The gene order cen-Junb-Um-Tat-(Cdh3/Aprt) was determined. The human homologue CDH3 was mapped to chromosome 16q24.1-qter by analyzing human/mouse somatic cell hybrids.  相似文献   

2.
M Ozawa  H Baribault    R Kemler 《The EMBO journal》1989,8(6):1711-1717
Uvomorulin belongs to the group of Ca2+-dependent cell adhesion molecules, which are integral membrane proteins with several structural features in common. In particular, the cytoplasmic part of these proteins is highly conserved in different species, suggesting a common biological function. To test this assumption we transfected a uvomorulin full-length cDNA into uvomorulin-negative mouse NIH 3T3 and L cells. Immunoprecipitations with anti-uvomorulin antibodies detected, in addition to uvomorulin, three independent proteins of 102, 88 and 80 kd which are of host origin and which form complexes with uvomorulin. Using cDNA constructs coding for uvomorulin with cytoplasmic or extracellular deletions it is shown that the 102, 88 and 80 kd proteins complex with the cytoplasmic domain of uvomorulin. Peptide pattern analysis revealed that these three proteins are identical in different mouse cells. When uvomorulin cDNA was introduced into cell lines from other species, such as human HeLa and avian fibroblasts, the expressed uvomorulin was also associated with endogenous 102, 88 and 80 kd proteins and, moreover, each of these proteins showed structural similarities to the respective mouse molecule. A panel of antibodies specific for known cytoplasmic proteins of mol. wts similar to those of the three proteins did not react with any of the described components. This suggests that the 102, 88 and 80 kd proteins constitute a new group of proteins for which we propose the nomenclature of catenin alpha, beta and gamma respectively. The characterization of these proteins provides a first molecular basis for a possible cytoplasmic anchorage of uvomorulin to the cytoskeleton.  相似文献   

3.
Using cDNA probes for the human uvomorulin (UVO) and rat chymotrypsinogen B (CTRB) genes, we have analyzed two overlapping interstitial deletions on human chromosome 16q by Southern blot analysis. One deletion, with breakpoints at 16q22.1 and 16q22.3, results in loss of the UVO locus. The second deletion, whose breakpoints are at 16q22.1 and 16q23.2, leads to loss of the CTRB locus. Therefore, UVO resides between both proximal deletion breakpoints within band 16q22.1, whereas CTRB is located between both distal breakpoints at 16q22.3 and 16q23.2.  相似文献   

4.
5.
6.
7.
A gastrula cDNA library was screened using a cDNA probe encoding the cytoplasmic domain of uvomorulin, a mouse Ca(2+)-dependent cell adhesion molecule. A Xenopus cDNA clone was isolated, which shares an amino acid sequence identity with uvomorulin of 91% in the transmembrane and 89% in the cytoplasmic domain. A restriction fragment of 397 bp representing the lowest degree of identity to all other known cadherin sequences was used to study the expression pattern of this Xenopus cadherin gene on RNA and protein level. The 397 bp restriction fragment was expressed bacterially as fusion protein, against which polyclonal antibodies were raised. An mRNA of 3.9 kb and a corresponding 125 kDa glycoprotein could be identified. Both molecules are present throughout oogenesis and early embryogenesis. When cleavage starts, the protein becomes integrated into the newly formed membranes. This polypeptide is found at cell membranes of all blastomeres except those at the outer surface of the embryo. Immunoblots and immunohistological analyses of adult organs reveal that this protein is expressed in pituitary gland, lung and kidney. It could not be detected in liver, heart and skeletal muscle. Since this cadherin differs in its tissue distribution from that of U-cadherin and in sequence alignments from ep-cadherin, it was termed XBcad for Xenopus blastomere cadherin.  相似文献   

8.
We have examined the synthesis and distribution of the cell adhesion molecule uvomorulin in mouse preimplantation embryos. Uvomorulin can already be detected on the cell surface of unfertilized and fertilized eggs but is not synthesized in these cells. Uvomorulin synthesis starts in late two-cell embryos and seems not to be correlated with the onset of compaction. The first signs of compaction are accompanied by a redistribution of uvomorulin on the surface of blastomeres. During compaction uvomorulin is progressively removed from the apical membrane domains of peripheral blastomeres. In compact morulae uvomorulin is no longer present on the outer surface of the embryo but is localized predominantly in membrane domains involved in cell-cell contacts of adjacent outer blastomeres. On inner blastomeres of compact morulae uvomorulin remains evenly distributed. This uvomorulin distribution once established during compaction is maintained and also found in the blastocyst: on trophectodermal cells uvomorulin localization is very similar to that in adult intestinal epithelial cells while uvomorulin remains evenly distributed on the surface of inner cell mass cells. The possible role of the redistribution of uvomorulin for the generation of trophectoderm and inner cell mass in early mouse embryos is discussed.  相似文献   

9.
Uvomorulin is a cell-adhesion molecule implicated in the compaction process of mouse preimplantation embryos and the aggregation of embryonal carcinoma cells. A rabbit antiserum against purified uvomorulin also reacts with epithelial cells of various adult tissues. In this study, we investigated the localization of uvomorulin on adult intestinal epithelial cells using electron microscopic analyses. Uvomorulin was shown to exhibit a highly restricted localization in the intermediate junctions of these cells. The results are discussed with respect to a possible adhesive function of uvomorulin on intestinal epithelial cells.  相似文献   

10.
Identification of a putative cell adhesion domain of uvomorulin.   总被引:41,自引:4,他引:37       下载免费PDF全文
D Vestweber  R Kemler 《The EMBO journal》1985,4(13A):3393-3398
A rat monoclonal antibody (DECMA-1) selected against the murine cell adhesion molecule uvomorulin blocks both the aggregation of mouse embryonal carcinoma cells and the compaction of pre-implantation embryos. However, decompacted embryos eventually become recompacted in the presence of DECMA-1 and form blastocysts composed of both trophectoderm and inner cell mass. DECMA-1 also disrupts confluent monolayers of Madin-Darby canine kidney (MDCK) epithelial cells. DECMA-1 recognizes uvomorulin in extracts from mouse and dog tissues. Protease digestion of mouse and dog uvomorulin generated core fragments including one of 26 kd which reacted with DECMA-1. The same 26-kd fragment is recognized by anti-uvomorulin monoclonal antibodies which have been obtained from other laboratories and which dissociate MDCK cell monolayers and block the formation of the epithelial occluding barrier. This 26-kd fragment therefore seems to be involved in the adhesive function of uvomorulin.  相似文献   

11.
Compaction of the eight-cell stage mouse embryo is a critical event in the generation of different cell types within the preimplantation embryo. Uvomorulin, a member of the cadherin family of cell adhesion molecules, is important during compaction and its phosphorylation increases early in the eight-cell stage, suggesting that this posttranslational modification may be important for compaction to proceed. We have assessed the importance of the phosphorylation of uvomorulin during compaction by preventing, reversing, or inducing adhesion prematurely. The only condition that affected the overall level of uvomorulin phosphorylation was the prevention of compaction through prolonged exposure of four-cell embryos to low Ca2−. This treatment reduced the level of uvomorulin phosphorylation in eight-cell embryos, and perturbed its localization to regions of cell-cell contact. Thus, whilst the phosphorylation of uvomorulin does not appear to regulate directly uvomorulin's adhesive function, it may be associated with the redistribution of uvomorulin during compaction. © 1996 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Autophagy is an intracellular bulk degradation system, which delivers cytoplasmic components to the lysosome/vacuole. In yeast and mammalian cells, the Apg12-Apg5 conjugate, together with Apg16, form a multimeric complex, which plays an essential role in autopihageosome formation. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a cDNA encoding a putative protein with 607 amino acid residues, which shows 90% identity and 93% similarity to mouse Apg16L. This protein, designated human Apg16L, contains a coiled-coil domain and a motif with seven WD repeats, which are also shared by mouse Apg16L. Database searching revealed that Apg16L is mapped to chromosome 2q37.1 and there exist at least four splice variants.  相似文献   

15.
16.
Synthesis and phosphorylation of uvomorulin during mouse early development.   总被引:5,自引:0,他引:5  
The cell adhesion molecule, uvomorulin, is synthesised in both the 135 x 10(3) M(r) precursor and 120 x 10(3) M(r) mature forms on maternal mRNA templates in unfertilized and newly fertilized mouse oocytes. Synthesis on maternal message ceases during the 2-cell stage to resume later on mRNA encoded presumptively by the embryonic genome. Uvomorulin is detectable by immunoblotting at all stages upto the blastocyst stage, but shows variations in its total amount and processing with embryonic stage. Whilst only trace levels of phosphorylated uvomorulin are detectable in early and late 4-cell embryos, uvomorulin in 8-cell embryos is phosphorylated.  相似文献   

17.
NYD-SP16, a novel gene associated with spermatogenesis of human testis   总被引:15,自引:0,他引:15  
By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, a novel human testis gene NYD-SP16 was identified. NYD-SP16 expression was 6.44-fold higher in adult testis than in fetal testis. NYD-SP16 contains 1595 base pairs (bp) and a 762-bp open reading frame encoding a 254-amino acid protein with 73% amino acid sequence identity with the mouse testis homologous protein. The NYD-SP16 gene was localized to human chromosome 5q14. The deduced structure of the NYD-SP16 protein contains one transmembrane domain, which was confirmed by GFP/NYD-SP16 fusion protein expression in the cytomembrane of the transfected human choriocarcinoma JAR cells, suggesting that it is a transmembrane protein. Multiple tissue distribution indicated that NYD-SP16 mRNA is highly expressed in the testes and pancreas, with little or no expression elsewhere. Further analysis of abnormal expression in infertile male patients revealed complete absence of NYD-SP16 in the testes of patients with Sertoli-cell-only syndrome and variable expression in patients with spermatogenic arrest. Homologous gene expression in mouse testis was confirmed in spermatogenic cells by in situ hybridization. The results of cDNA microarray, in situ hybridization, and semiquantitative polymerase chain reaction in mouse testis of different stages indicated that NYD-SP16 expression is developmentally regulated. These results suggest that the putative NYD-SP16 protein may play an important role in testicular development/spermatogenesis and may be an important factor in male infertility.  相似文献   

18.
19.
Down Syndrome Cell Adhesion molecule (DSCAM) is a member of the immunoglobulin superfamily, and represents a novel class of neuronal cell adhesion molecules. In order to understand the cellular functions of DSCAM, we isolated full-length mouse and human cDNA clones, and analysed its expression during mouse development and differentiation. Sequence analysis of the human DSCAM cDNA predicted at least 33 exons that are distributed over 840 kb. When compared to human DSCAM, the mouse homologue showed 90 and 98% identity at the nucleotide and amino acid levels, respectively. In mouse, DSCAM is located on 16C, the syntenic region for human chromosome band 21q22 and also the region duplicated in mouse DS models. DSCAM gene is predicted to encode an approximately 220-kDa protein, and its expression shows dynamic changes that correlate with neuronal differentiation during mouse development. Our results suggest that DSCAM may play critical roles in the formation and maintenance of specific neuronal networks in brain.  相似文献   

20.
小鼠Smad3基因的克隆及其在小鼠组织中的表达   总被引:4,自引:0,他引:4  
采用PCR获得的Smad3cDNA片段作为探针筛选小鼠脑cDNA文库 .克隆了小鼠全长的Smad3基因 .对小鼠Smad3基因的全编码区进行了序列测定 .结果表明 ,小鼠SMAD3与人SMAD3氨基酸同源性高达 99% .与小鼠Smad2基因相比 ,碱基同源性高达 91 8% .Northern杂交显示 ,Smad3基因在小鼠胚胎发育和各成体器官中普遍表达 .原位杂交显示 ,Smad3基因表达在小鼠胚胎期E16 5d的软骨、骨髓和皮肤角质细胞中  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号