首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct electrochemistry of hemoglobin in gold nanowire array   总被引:3,自引:0,他引:3  
Yang M  Qu F  Li Y  He Y  Shen G  Yu R 《Biosensors & bioelectronics》2007,23(3):414-420
Gold nanowire array has been proven to be efficient support matrixes for the immobilization of hemoglobin (Hb). The vertically oriented nanowire array provides an ordered well-defined 3D structure with nanowire density approximately 5 x 10(8)cm(2). The adsorption of ferritin onto the nanowire surface was visualized by transmission electron microscopy. When Hb was adsorbed, UV-vis absorption and Fourier transform infrared (FT-IR) spectra show no obvious denaturation of Hb in the nanowire array. The Hb-modified nanowire array exerted direct electron transfer and gave a well-defined, nearly reversible redox couple with formal potential of -0.225 V. The quantity of electroactive Hb varied with the changing of the morphology of the electrode and found to increase with the increasing of the nanowire length. Comparisons of voltammetric and quartz crystal microbalance measurements show that 70% of the Hb molecules adsorbed are electroactive when the length of the nanowire was 2 microm. Both of the Hb-modified nanowire array and the unmodified nanowire array demonstrate good electrocatalytic reduction ability for hydrogen peroxide. With the adsorption of glucose oxidase onto the bare nanowire surface, sensitive and selective glucose biosensors can be fabricated.  相似文献   

2.
Piezoelectric quartz crystal impedance (QCI) technique was used for monitoring the Cu(2+)-induced precipitation of bovine serum albumin onto the gold electrode. The critical precipitate concentration of Cu(2+) reflected by the significant decrease in the resonant frequency was estimated to be 9.98 x 10(-5) mol x l(-1), and the saturated adherence of the precipitate on the electrode occurred when the Cu(2+) concentration was greater than 9.79x10(-3) mol x l(-1). The frequency shift in air was about 85.5% of that in liquid, and the Deltaf(0)/DeltaR(1) ratio found in solution was 82.67 Hz Omega(-1), suggesting that the frequency response was predominated by the mass change due to precipitate adherence to the electrode surface. The response of the resonant frequency was analyzed using an equation Deltaf=a(0) + a(1) e(-t/tau(1)) + a(2) e(-t/tau(2)). The relationship between the total a(0) values and the Cu(2+) concentration was discussed.  相似文献   

3.
Cao D  Hu N 《Biophysical chemistry》2006,121(3):209-217
Alternate adsorption of negatively charged Fe(3)O(4) nanoparticles from their pH 8.0 aqueous dispersions and positively charged hemoglobin (Hb) from its pH 5.5 buffers on solid substrates resulted in the assembly of {Fe(3)O(4)/Hb}(n) layer-by-layer films. Quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV) were used to monitor and confirm the film growth. A pair of well-defined, nearly reversible CV peaks for HbFe(III)/Fe(II) redox couples was observed for {Fe(3)O(4)/Hb}(n) films on pyrolytic graphite (PG) electrodes. Although the multilayered films grew linearly with the number of Fe(3)O(4)/Hb bilayers (n) and the amount of Hb adsorbed in each bilayer was generally the same, the electroactive Hb could only extend to 6 bilayers. This indicates that only those Hb molecules in the first few bilayers closest to the electrode surface are electroactive. The electrochemical parameters such as the apparent heterogeneous electron transfer rate constant (k(s)) were estimated by square wave voltammetry (SWV) and nonlinear regression. The Soret absorption band position of Hb in {Fe(3)O(4)/Hb}(6) films showed that Hb in the films retained its near native structure in the medium pH range. The {Fe(3)O(4)/Hb}(6) film electrodes also showed good biocatalytic activity toward reduction of oxygen, hydrogen peroxide, trichloroacetic acid, and nitrite. The electrochemical reduction overpotentials of these substrates were lowered significantly by {Fe(3)O(4)/Hb}(n) films.  相似文献   

4.
The capacitive sensing method has been applied to study the binding of DNA with chloroquine phosphate. DNA was immobilized on a gold electrode surface, self-assembled with thioglycolic acid. The results of a quartz crystal impedance (QCI) study indicate that the reaction of double-strand DNA (dsDNA) with chloroquine includes a fast electrostatic attraction and a slow intercalation of chloroquine into double-strand helix. The real-time experimental data obtained by capacitive sensing also revealed two distinctive kinetics stages during binding of dsDNA with chloroquine, while only one stage exists during reaction of single-strand DNA (ssDNA) with chloroquine. The kinetic parameters were obtained by fitting the real-time experimental data using a two stage reaction model. The rate constants of electrostatic attraction for dsDNA and ssDNA are estimated as 0.014 and 0.018 s(-1), respectively. The rate constant of the second stage of dsDNA is 0.0011 s(-1).  相似文献   

5.
A convenient and effective strategy for preparation nanohybrid film of multi-wall carbon nanotubes (MWNT) and gold colloidal nanoparticles (GNPs) by using proteins as linker is proposed. In such a strategy, hemoglobin (Hb) was selected as model protein to fabricate third-generation H2O2 biosensor based on MWNT and GNPs. Acid-pretreated, negatively charged MWNT was first modified on the surface of glassy carbon (GC) electrode, then, positively charged Hb was adsorbed onto MWNT films by electrostatic interaction. The {Hb/GNPs}n multilayer films were finally assembled onto Hb/MWNT film through layer-by-layer assembly technique. The assembly of Hb and GNPs was characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The direct electron transfer of Hb is observed on Hb/GNPs/Hb/MWNT/GC electrode, which exhibits excellent electrocatalytic activity for the reduction of H2O2 to construct a third-generation mediator-free H2O2 biosensor. As compared to those H2O2 biosensors only based on carbon nanotubes, the proposed biosensor modified with MWNT and GNPs displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 2.1x10(-7) to 3.0x10(-3) M with a detection limit of 8.0x10(-8) M at 3sigma. The Michaelies-Menten constant KMapp value is estimated to be 0.26 mM. Moreover, this biosensor displays rapid response to H2O2 and possesses good stability and reproducibility.  相似文献   

6.
In this study, poly(varepsilon-caprolactone) (PCL) was synthesized using the varepsilon-caprolactone (CL) monomer ring-opening polymerization. We demonstrated that the hemoglobin (Hb) entrapped in PCL film could retain its original conformation by FT-IR spectra. A pair of well-defined redox peaks with a formal potential (E0') of about -0.38V (vs. SCE) in a pH 7.0 phosphate buffer solution was obtained at the Hb-PCL film modified GC electrode. The dependence of [Formula: see text] on the pH of the buffer solution indicated that the conversion of heme Fe(III)/Fe(II) was a reaction of one electron coupled to one proton. The apparent heterogeneous electron transfer rate constants (ks) of Hb confined to PCL was valuated as (18.7+/-0.8)s(-1) according to Laviron's equation. The surface concentration (Gamma*) of the electroactive Hb in the PCL film was estimated to be (7.27+/-0.57)x10(-11)molcm(-2). The Hb-PCL film modified electrode was shown to be an excellent amperometric sensor for the detection of hydrogen peroxide. The linear range is from 2 to 30microM with a detection limit of 6.07x10(-6)M. The sensor was effectively testified by the determination of the hydrogen peroxide in eyedrops as real samples.  相似文献   

7.
A strategy of ex situ electrochemical method has been proposed for investigating the chloride effect on hemoglobin (Hb). Unlike the common electrochemical method that measures the chloride effect on Hb in bulk solution (in situ), the effects of chloride anion on Hb were investigated ex situ by adsorptive transfer voltammetry (AdTV) in this work. Gold electrode modified by self-assembled monolayer of 3-mercaptopropanoic acid (AuE/MPA) was prepared and then incubated in a series of Hb solutions containing different concentrations of chloride anion for adsorbing Hb-Cl (AuE/MPA/Hb-Cl). The resulting electrode was then measured in phosphate buffer solution by cyclic voltammetry. The corresponding voltammograms showed obvious promotion of the direct electron transfer of Hb with remarkable increase of peak currents, decrease of peak-to-peak separations, and negative shift of the formal potentials. As complementation, the adsorption behavior of Hb-Cl on AuE/MPA, the structural information of Hb-Cl, and the electrocatalytic ability of AuE/MPA/Hb-Cl toward hydrogen peroxide were investigated by surface plasmon resonance, circular dichroism spectrum, ultraviolet-visible spectrum and amperometry, respectively. The results indicate that the chloride effect resulted in more electroactive sites of Hb on the surface of electrode. Meanwhile, the specific and nonspecific interactions between Hb and chloride anion can be discriminated from the electrochemical parameters obtained by AdTV.  相似文献   

8.
A new electrochemical method to monitor biotin-streptavidin interaction, based on the use of colloidal gold as an electrochemical label, is investigated. Biotinylated albumin is adsorbed on the pretreated surface of a carbon paste electrode (CPE). This modified electrode is immersed in colloidal gold-streptavidin labelled solutions. Adsorptive voltammetry is used to monitor colloidal gold bound to streptavidin, obtaining a good reproducibility of the analytical signal (R.S.D. = 3.3%). A linear relationship between peak current and streptavidin concentration from 2.5 x 10(-9) to 2.5 x 10(-5) M is obtained when a sequential competitive assay between streptavidin and colloidal gold-labelled streptavidin is carried out. On the other hand, the adsorption of streptavidin on the electrode surface was performed, followed by the reaction with biotinylated albumin labelled with colloidal gold. In this way, a linear relationship between peak current and colloidal gold labelled biotinylated albumin concentration is achieved with a limit of detection of 7.3 x 10(9) gold particles per ml (5.29 x 10(-9) M in biotin).  相似文献   

9.
Tao W  Pan D  Liu Y  Nie L  Yao S 《Analytical biochemistry》2005,338(2):332-340
A series of hybrid iron-cobalt hexacyanoferrate (FeCoHCF) films were electrodeposited on gold electrodes from solutions containing 6mM Fe(CN)(6)(3-) with different concentrations of Co(2+) and Fe(3+). FeCoHCF films deposited from solutions with different molar ratios of iron were studied by cyclic voltammetry, and their solid states were characterized by Fourier transform infrared spectroscopy. The kind of FeCoHCF film that deposited from a solution with a molar ratio of iron of 0.4 showed the largest response current to H(2)O(2) and was characterized by energy-dispersive X-ray spectroscopy. Therefore, the optimized FeCoHCF film was combined with nonconducting poly(o-aminophenol) (POAP) film that entrapped the hemoglobin (Hb) to construct hydrogen peroxide biosensor. The response current of the Hb/POAP/FeCoHCF/Au electrode (29.8 nA) was nearly 40 and was 1.5 times that of the Hb/POAP/Au (0.7 nA) and POAP/FeCoHCF/Au (20 nA) electrodes, respectively. The Michaelis-Menten constant of Hb in the Hb/POAP/FeCoHCF/Au film was 9.31 mM. These results show that the immobilized Hb in the Hb/POAP/FeCoHCF/Au film exhibits higher catalytic activity and larger response current to H(2)O(2) by the mediation of FeCoHCF. In addition, effects of applied potential, solution pH, and electroactive interferent on the response current of the Hb/POAP/FeCoHCF/Au electrode were investigated in detail.  相似文献   

10.
A quartz crystal biosensor for measurement in liquids.   总被引:5,自引:0,他引:5  
The detection of anti-human immunodeficiency virus (HIV) antibodies by means of synthetic HIV peptide immobilized on a piezoelectric quartz sensor is demonstrated. The measurement set-up consists of an oscillator circuit, a suitably modified AT-cut thickness-shear-mode quartz crystal with gold electrodes, which is housed in a special reaction vessel, and a computer-controlled frequency counter for the registration of the measured frequency values. The quartz crystal is adapted for a steady operation in liquids at a frequency of 20 MHz. In phosphate-buffered saline solution the oscillator reaches a stability of about 0.5 Hz within a few seconds, of about 2 Hz within 10 min and about 30 Hz within 1 h. The frequency shift due to the adsorption of various proteins to the uncoated sensor surface has been investigated. It can be shown that a stable adsorptive binding of proteins to an oscillating gold surface is feasible and can be used for the immobilization of a receptor layer (e.g. HIV peptide). Specific binding of the anti-HIV monoclonal antibody to the HIV peptide immobilized on the quartz sensor is demonstrated. Control experiments show, however, additional unspecific binding. According to the experiments, the Sauerbrey formula gives a sufficiently accurate value for the decrease of the resonant frequency due to adsorption or binding of macromolecular proteins on the quartz crystal surface.  相似文献   

11.
Long Y  Chen J  Zhang Z  Yao S 《Journal of biotechnology》2003,105(1-2):105-116
Real-time investigation of the interaction between primaquine phosphate and bovine serum albumin by the piezoelectric quartz crystal impedance (PQCI) analysis was carried out for the first time. Three kinds of electrodes were investigated. Compared with bare gold (Au) electrode, the gold electrode self-assembled of nanogold colloids exhibits maintained biocompatibility, increased capacity and more bioactivity. Additionally, on the basis of the multi-dimensional information provided by the PQCI analysis, the real-time interaction information and the kinetics of the binding process was investigated and a response model was deduced. At 37 degrees C, the binding rate (k1), dissociation rate (k(-1)) and equilibrium constants (Ka) were 4.19x10(2) (mol l(-1))(-1) s(-1), 1.01x10(-3) s(-1) and 4.15x10(5) (mol l(-1))(-1) for the electrode modified by nanogold particles; 3.83x10(2) (mol l(-1))(-1) s(-1), 9.70x10(-4) s(-1) and 3.95x10(5) (mol l(-1))(-1) for the bare gold electrode, respectively.  相似文献   

12.
In this paper, we exploit the potential offered by site-directed mutagenesis to achieve direct adsorption of horse cyt c on a bare gold electrode surface. To this issue, the side chain T102 has been replaced by a cysteine. T102 is close to the surface exposed C-terminal residue (E104), therefore the T102C mutation is expected to generate an exposed cysteine side chain able to facilitate protein binding to the electrode via the sulphur atom (analogously to what observed for yeast iso-1-cyt c). Scanning Tunnelling and Tapping Mode Atomic Force Microscopy measurements show that the T102C mutant stably adsorbs on an Au(111) surface and retains the morphological characteristics of the native form. Cyclic voltammetry reveals that the adsorbed variant is electroactive; however, the heterogeneous electron transfer with the electrode surface is slower than that observed for yeast iso-1-cyt c. We ascribe it to differences in the tertiary architecture of the two proteins, characterized by different flexibility and stability. In particular, the region where the N- and C-terminal helices get in contact (and where the mutation occurs) is analyzed in detail, since the interactions between these two helices are considered crucial for the stability of the overall protein fold.  相似文献   

13.
A simple and sensitive electrochemical DNA biosensor based on in situ DNA amplification with nanosilver as label and horseradish peroxide (HRP) as enhancer has been designed. The thiolated oligomer single-stranded DNA (ssDNA) was initially directly immobilized on a gold electrode, and quartz crystal microbalance (QCM) gave the specific amount of ssDNA adsorption of 6.3 ± 0.1 ng/cm2. With a competitive format, hybridization reaction was carried out via immersing the DNA biosensor into a stirred hybridization solution containing different concentrations of the complementary ssDNA and constant concentration of nanosilver-labeled ssDNA, and then further binding with HRP. The adsorbed HRP amount on the probe surface decreased with the increment of the target ssDNA in the sample. The hybridization events were monitored by using differential pulse voltammetry (DPV) with the adsorbed HRP toward the reduction of H2O2. The reduction current from the enzyme-generated product was related to the number of target ssDNA molecules in the sample. A detection of 15 pmol/L for target ssDNA was obtained with the electrochemical DNA biosensor. Additionally, the developed approach can effectively discriminate complementary from non-complementary DNA sequence, suggesting that the similar enzyme-labeled DNA assay method hold great promises for sensitive electrochemical biosensor applications.  相似文献   

14.
A novel amperometric immunosensor for human chorionic gonadotropin (HCG) assay has been fabricated through incorporating toluidine blue (TB) and hemoglobin (Hb) on the multiwall carbon nanotube (MWNT)-chitosan (CS) modified glassy carbon electrode, followed by electrostatic adsorption of a conducting gold nanoparticles (nanogold) film as sensing interface. The MWNT-CS matrix provided a congenial microenvironment for the immobilization of biomolecules and promoted the electron transfer to enhance the sensitivity of the immunosensor. Due to the strong electrocatalytic properties of Hb and MWNT toward H(2)O(2), the Hb and MWNT significantly amplified the current signal of the antigen-antibody reaction. The immobilized toluidine blue as an electron transfer mediator exhibited excellent electrochemical redox property. After the immunosensor was incubated with HCG solution, the access of activity center of the Hb to toluidine blue was partly inhibited, which leaded to a linear decrease in the catalytic efficiency of the Hb to the oxidation of immobilized toluidine blue by H(2)O(2) over HCG concentration ranges from 0.8 to 500 mIU/mL. Under optimal condition, the detection limit for the HCG immunoassay was 0.3 mIU/mL estimated at a signal-to-noise ratio of 3. Moreover, the proposed immunosensor displayed a satisfactory stability and reproducibility.  相似文献   

15.
Su Y  Xie Q  Chen C  Zhang Q  Ma M  Yao S 《Biotechnology progress》2008,24(1):262-272
The electrochemical quartz crystal microbalance (EQCM) technique was utilized to monitor in situ the adsorption of glucose oxidase (GOD) and the mixture of GOD and sodium dodecyl benzene sulfonate (SDBS) onto Au electrodes with and without modification of multiwalled carbon nanotubes (MWCNTs) or SDBS/MWCNTs composite, and the relationship between enzymatic specific activity (ESA) and direct electrochemistry of the immobilized GOD was quantitatively evaluated for the first time. Compared with the bare gold electrode at which a little GOD was adsorbed and the direct electrochemistry of the adsorbed GOD was negligible, the amount and electroactivity of adsorbed GOD were greatly enhanced when the GOD was mixed with SDBS and then adsorbed onto the SDBS/MWCNTs modified Au electrode. However, the ESA of the adsorbed GOD was fiercely decreased to only 16.1% of the value obtained on the bare gold electrode, and the portion of adsorbed GOD showing electrochemical activity exhibited very low enzymatic activity, demonstrating that the electroactivity and ESA of immobilized GOD responded oppositely to the presence of MWCNTs and SDBS. The ESA results obtained from the EQCM method were well supported by conventional UV-vis spectrophotometry. The direct electrochemistry of redox proteins including enzymes as a function of their biological activities is an important concern in biotechnology, and this work may have presented a new and useful protocol to quantitatively evaluate both the electroactivity and ESA of trace immobilized enzymes, which is expected to find wider applications in biocatalysis and biosensing fields.  相似文献   

16.
A novel electrochemical method for the detection of bioaffinity interactions based on a gold-nanoparticles sensing platform and on the usage of stripping voltammetry technique was developed. The oxidation of gold surface (resulted in gold oxide formation) upon polarization served as a basis for analytical response. As a model, thrombin-thrombin binding aptamer couple was chosen. The aptamer was immobilized on a screen-printed electrode modified with gold-nanoparticles by avidin-biotin technology. Cathodic peak area was found proportional to thrombin quantity specifically adsorbed onto electrode surface. Sigmoid calibration curve as is typical for immunoassay was obtained, with thrombin detection limit of 10(-9)M. Linear range corresponds from 10(-8) to 10(-5)M thrombin concentration or 2 x 10(-14) to 2 x 10(-11)mol/electrode (R=0.996). Binding of thrombin to an aptamer has also been detected using the ferricyanide/ferrocyanide redox couple as electrochemical indicator.  相似文献   

17.
This study deals with the specific interaction between the lectin peanut agglutinin (PNA) from Arachis hypogaea and the ganglioside GM1 which was incorporated in a solid supported lipid bilayer immobilized on a gold electrode placed on top of an AT-cut quartz crystal. Bilayer formation was reached by self-assembly processes. The first monolayer consists of octanethiol attached to the gold surface via chemisorption and the second monolayer was immobilized by vesicle fusion on the preformed hydrophobic surface. We managed to keep unspecific binding to a minimum by using a phospholipid matrix consisting of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Lectin binding to ganglioside GM1 containing membranes was determined by a decrease of the resonant frequency of the quartz crystal. The minimum amount of receptor within the membrane which is necessary to obtain a complete protein monolayer was found to be less than 2 mol%. The adsorption isotherm of PNA to GM1 was recorded and analyzed to be of Langmuir type, exhibiting a binding constant of PNA to the ganglioside of 8.3 ⋅ 105 M–1. The good agreement of the calculated Langmuir adsorption isotherm with the obtained experimental data implies that protein multilayers are not formed and that interactions between the adsorbents can be neglected. Furthermore, the association constants of two different saccharides, β-Galp-(1 → 3)-GalNAc exhibiting a strong binding to PNA in solution, and β-D-galactose with a much lower affinity were estimated by determining the equilibrium concentration of PNA attached to the surface. Moreover we were able to remove the attached lectin monolayer by digestion of the protein with pronase causing an increase in the resonant frequency which almost reversed the frequency shift to lower frequencies during adsorption. An even more complex system was built up by the use of digoxigenin-labeled PNA which also binds to the solid supported membrane containing the receptor GM1. The immobilized lectin was recognized by anti-digoxigenin-Fab-fragments, which is measurable by a further decrease of the resonant frequency. For all binding processes we found larger frequency shifts for a complete protein monolayer than predicted by Sauerbrey's equation, clearly showing that in addition to mass loading viscoelastic changes occur at the lipid-protein interface. Received: 22 July 1996 / Accepted: 12 September 1996  相似文献   

18.
A new electrochemical method to monitor biotin-streptavidin interaction on carbon paste electrode, based on silver electrodeposition catalyzed by colloidal gold, was investigated. Silver reduction potential changed when colloidal gold was attached to an electrode surface through the biotin-streptavidin interaction. Thus, the direct reduction of silver ions on the electrode surface could be avoided and therefore, they were only reduced to metallic silver on the colloidal gold particle surface, forming a shell around these particles. When an anodic scan was performed, this shell of silver was oxidized and an oxidation process at + 0.08 V was recorded in NH3 1.0 M. Biotinylated albumin was adsorbed on the pretreated electrode surface. This modified electrode was immersed in colloidal gold-streptavidin labeled solutions. The carbon paste electrode was then activated in adequate medium (NaOH 0.1 M and H2SO4 0.1 M) to remove proteins from the electrode surface while colloidal gold particles remained adsorbed on it. Then, a silver electrodeposition at -0.18 V for 2 min and anodic stripping voltammetry were carried out in NH3 1.0 M containing 2.0 x 10(-5) M of silver lactate. An electrode surface preparation was carried out to obtain a good reproducibility of the analytical signal (5.3%), using a new electrode for each experiment. In addition, a sequential competitive assay was carried out to determine streptavidin. A linear relationship between peak current and logarithm of streptavidin concentration from 2.25 x 10(-15) to 2.24 x 10(-12) M and a limit of detection of 2.0 x 10(15) M were obtained.  相似文献   

19.
Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a surface capable of mimicking the FN binding ability of T. pallidum in order to investigate the impact of FN binding with adsorbed Tp0483 on the host response to the surface. By understanding this interaction, it may be possible to develop more effective treatments for infection and possibly mimic the stealth properties of the bacteria. Functionalized self-assembled monolayers (SAMs) on gold were used to investigate rTp0483 and FN adsorption. Using a quartz crystal microbalance (QCM), rTp0483 adsorption and subsequent FN adsorption onto rTp0483 were determined to be higher on negatively charged carboxylate-terminated self-assembled monolayers (-COO(-) SAMs) compared to the other surfaces analyzed. Kinetic analysis of rTp0483 adsorption using surface plasmon resonance (SPR) supported this finding. Kinetic analysis of FN adsorption using SPR revealed a multistep event, where the concentration of immobilized rTp0483 plays a role in FN binding. An examination of relative QCM dissipation energy compared to the shift in frequency showed a correlation between the physical properties of adsorbed rTp0483 and SAM surface chemistry. In addition, AFM images of rTp0483 on selected SAMs illustrated a preference of rTp0483 to bind as aggregates. Adsorption on -COO(-) SAMs was more uniform across the surface, which may help further explain why FN bound more strongly. rTp0483 antibody studies suggested the involvement of amino acids 274-289 and 316-333 in binding between rTp0483 to FN, while a peptide blocking study only showed inhibition of binding with amino acids 316-333. Finally, surface adsorbed rTp0483 with FN bound significantly less anti-RGD and gelatin compared to FN adsorbed directly to -COO(-) SAMs, indicating that one or both binding regions may play a role in binding between rTp0483 and FN.  相似文献   

20.
Ding X  Li J  Hu J  Li Q 《Analytical biochemistry》2005,339(1):46-53
The direct electron transfer of surface-confined horse heart cytochrome c (Cyt c) was achieved using COOH-terminated alkanethiolate-modified gold electrode. Later DNA was immobilized on the two-layer modified electrode. The quantitative determination of DNA was explored and the interaction between cytochrome c and DNA was studied. The binding site sizes were determined to be 15 bp per Cyt c molecule with double-stranded (ds) DNA and 30 nucleotides binding one Cyt c molecule with single-stranded (ss) DNA. At the dsDNA/Cyt c/MUA/Au electrode, the rate constant of oxidation electron transfer k(s,ox)=1.59x10(-3)cms-1 was obtained, at the ssDNA/Cyt c/MUA/Au electrode, the value was 2.43x10(-3)ms-1 when the scan rate was 1.0V/s. The different electrodes were characterized with electrochemical quartz crystal microbalance and atomic force microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号