首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26-34), and the 8-amino acid alpha-bag cell peptide (alpha-BCP1-8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both alpha-BCP1-8 and B26-34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells is mimicked by alpha-BCP1-8. The excitatory effect of the atrial gland extract cannot be duplicated with B26-34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26-34 seems to mimick alpha-BCP1-8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

2.
脉红螺(Rapana Venosa)神经系统解剖的初步研究   总被引:11,自引:0,他引:11  
李国华  程济民 《动物学报》1990,36(4):345-351
本文对腹足纲、狭舌目、骨螺科的脉红螺神经系统的大体解剖和组织学进行了初步研究。脉红螺神经系统头向集中程度较高,神经节愈合现象较为明显。切片上观察,中枢神经节均由神经节被膜、胞体区和神经纤维网构成;形态上相似的神经细胞有集中分布的现象。  相似文献   

3.
We have examined the effects of peptides on the neuroendocrine bag cells, the R2 neuron and the left upper quadrant (LUQ) neurons of the abdominal ganglion of Aplysia californica. Peptides include those extracted from the atrial gland, a reproductive organ; those released by an afterdischarge of the bag cells; and 2 synthetic peptides: the amidated 9-amino acid C-terminal portion of atrial gland peptides A/B/ERH (B26–34), and the 8-amino acid alpha-bag cell peptide (α-BCP1–8). Peptides were applied by superfusion, arterial perfusion, pressure ejection from micropipettes, or by inducing a bag cell afterdischarge. Both α-BCP1–8 and B26–34 are able to produce a bag cell afterdischarge when applied to the abdominal ganglion but are not as effectively able to trigger the bag cells when applied selectively to the ganglia of the head ring. Peptides released by the bag cells inhibit R2 and LUQ neurons; whereas atrial gland extract mildly excites LUQ neurons and powerfully excites R2. The inhibitory effect of the LUQ cells and R2 following an afterdischarge of the bag cells in mimicked by α-BCP1–8. The excitatory effect of the atrial gland extract cannot be duplicated with B26–34. Rather, instead of having an excitatory effect on R2 and LUQ cells, B26–34 seems to mimick α-BCP1–8 and inhibit these neurons. Both peptides produce a membrane conductance increase in R2 and LUQ cells.  相似文献   

4.
两种软体动物神经系统一氧化氮合酶的组织化学定位   总被引:8,自引:0,他引:8  
运用一氧化氮合酶(NOS)组织化学方法研究了软体动物门双壳纲种类中国蛤蜊和腹足纲种类嫁Qi神经系统中NOS阳性细胞以及阳性纤维的分布。结果表明:在蛤蜊脑神经节腹内侧,每侧约有10-15个细胞呈强NOS阳性反应,其突起也呈强阳性反应,并经脑足神经节进入足神经节的中央纤维网中;足神经节内只有2个细胞呈弱阳性反应,其突起较短,进入足神经节中央纤维网中,但足神经节中,来自脑神经节阳性细胞和外周神经系统的纤维大多呈NOS阳性反应;脏神经节的前内侧部和后外侧部各有一个阳性细胞团,其突起分别进入后闭壳肌水管后外套膜神经和脑脏神经索。脏神经节背侧小细胞层以及联系两侧小细胞层的纤维也呈NOS阳性反应。嫁Qi中枢神经系统各神经节中没有发现NOS阳性胞体存在;脑神经节、足神经节、侧神经节以及脑—侧、脑—足、侧—脏连索中均有反应程度不同的NOS阳性纤维,这些纤维均源于外周神经。与已研究的软体动物比较,嫁Qi和前鳃亚纲其它种类一样,神经系统中NO作为信息分子可能主要存在于感觉神经。而中国蛤蜊的神经系统中一氧化氮作为信息分子则可能参与更广泛的神经调节过程。  相似文献   

5.
1. Central pathways for bag cell activation were identified by examining the frequency of spontaneous egg laying episodes in animals with central connective lesions. Bilateral lesions of the cerebropleural (but not the cerebropedal) connectives abolished spontaneous egg laying. In contrast, bilateral lesions of all cerebral ganglion peripheral nerves did not abolish spontaneous egg laying, suggesting that sensory input to the cerebral ganglion is not necessary for activating the bag cells. 2. Backfilling either pleuroabdominal connective labelled cell bodies in the cerebral ganglia (via the ipsilateral cerebropleural connective) that could project to the bag cells. Focal extracellular stimulation of these stained clusters activated the bag cells in isolated brains. 3. Central pathways for initiating egg laying behaviors were identified by selectively eliciting bag cell discharges in animals with central connective lesions. Bilateral lesions of the cerebropedal (but not the cerebropleural) connectives completely abolished elicited egg laying behaviors. 4. Pathways for motor output during rhythmic head and neck movements were identified by eliciting bag cell discharges in animals with peripheral nerve lesions. Bilateral lesions of the four tegumentary nerves in combination with the anterior pedal nerve completely abolished elicited egg laying behaviors, indicating that these nerves are necessary for normal motor output. A normal pattern of egg laying behaviors occurred when the four tegumentary and the anterior pedal nerves were left intact and all other pedal ganglion nerves were lesioned bilaterally, indicating that these nerves are also sufficient for normal motor output.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Serotonin immunoreactivity of neurons in the gastropod Aplysia californica   总被引:2,自引:0,他引:2  
Serotonergic neurons and axons were mapped in the central ganglia of Aplysia californica using antiserotonin antibody on intact ganglia and on serial sections. Immunoreactive axons and processes were present in all ganglia and nerves, and distinct somata were detected in all ganglia except the buccal and pleural ganglia. The cells stained included known serotonergic neurons: the giant cerebral neurons and the RB cells of the abdominal ganglion. The area of the abdominal ganglion where interneurons are located which produce facilitation during the gill withdrawal reflex was carefully examined for antiserotonin immunoreactive neurons. None were found, but two bilaterally symmetric pairs of immunoreactive axons were identified which descend from the contralateral cerebral or pedal ganglion to abdominal ganglion. Because of the continuous proximity of this pair of axons, they could be recognized and traced into the abdominal ganglion neuropil in each preparation. If serotonin is a facilitating transmitter in the abdominal ganglion, these and other antiserotonin immunoreactive axons in the pleuroabdominal connectives may be implicated in this facilitation.  相似文献   

7.
Summary Three lines of evidence are presented indicating that axons of the Aplysia neuroendocrine bag cells extend into the head-ring ganglia of the CNS. When the abdominal ganglion was bisected longitudinally, separating the two bag cell clusters, an afterdischarge induced in one cluster generated an afterdischarge in the other via activity through the head-ring ganglia to which each half abdominal ganglion was attached by connective nerves. This suggests that some axons of bag cells in each cluster communicate through the head-ring ganglia. Retrograde labelling of bag cells occurred when rhodamine-onjugated latex microspheres were injected into the cerebral or either pleural ganglion, a direct demonstration that bag cell axons extend into these ganglia. Finally, cell LP1 in the left pleural ganglion was inhibited during a bag cell afterdischarge, an action mimicked by application of alpha-bag cell peptide (BCP). Since BCP can act only close to its site of release due to susceptibility to peptidase activity, it is likely that LP1 inhibition is dependent on the local release of BCP from bag cell neurites in the pleural ganglion. These results open new possibilities for how bag cell afterdischarges may be initiated and broaden the distribution of their effects.Abbreviations ASW artificial sea water; -BCP -bag cell peptide - ELH egg-laying-hormone - IR immunorective - PB phosphate buffer - PVC pleurovisceral connective  相似文献   

8.
The nervous system of the pond snail, Helisoma trivolvis, was investigated for its ability to synthesize and accumulate 3H-catecholamines from 3H-tyrosine. 3H-Dopamine, but not 3H-norepinephrine, was synthesized by several ganglia. The highest accumulations were found in the cerebral, pedal, and buccal ganglia. The Falck-Hillarp and glyoxylic acid fluorescence histochemical techniques were applied to the buccal ganglia to visualize dopamine-containing cells. Fluorescing cells were found on both dorsal and ventral sides of the ganglion. Peripheral nerves of the buccal ganglia also displayed catecholamine fluorescence and accumulated 3H-dopamine. However, no 3H-dopamine synthesis occurred in the cerebral-buccal connectives, which connect the buccal ganglia with the rest of the central nervous system. Therefore, we conclude that there is a dopaminergic system intrinsic to the buccal ganglia and their peripheral targets.  相似文献   

9.
Summary The caudo-dorsal cells (CDC) in the cerebral ganglia of the pond snail Lymnaea stagnalis synthesize the 36-amino acid ovulation hormone (CDCH). We have used immuno-cytochemistry and in situ hybridization to reveal the localization of neurons and axons containing CDCH-like material.A monoclonal antibody to a fragment of CDCH and a cDNA probe encoding CDCH reacted with the CDC-system, with specific cell groups in the cerebral and pleural ganglia, and with individually occurring neurons throughout the central nervous system. The cells in the pleural ganglia, which were found in about 50% of the preparations studied, are considered as ectopic CDC. They are morphologically similar to CDC in their somal dimensions and axonal organization. By means of immuno-electron microscopy it was shown that these neurons contain secretory vesicles that are similar to those of the CDC. The neurons of the bilateral groups occurring in the cerebral ganglia in addition to the CDC are smaller and more intensely stained than the CDC. Axons of these small neurons probably have varicosities located on the CDC axons in the neuropil of the cerebral ganglion, indicating synaptic contacts. Two major axon tracts could be followed from (or toward) the neuropil of the cerebral ganglion. One tract runs from the cerebral gangion via the pleural and parietal ganglia to the visceral ganglion, giving off branches to most nerves emanating from these ganglia. The other tract could be traced through the cerebro-pedal connective to the pedal ganglia. Only in the right pedal ganglion was extensive axonal branching observed. The nerves emanating from this ganglion contained many more immunoreactive axons than those from the left pedal ganglion. A polyclonal antibody raised against the synthetic fragment of CDCH stained, in addition to the neurons and axons revealed with the monoclonal antibody and the cDNA probe, three other major groups of neurons. Two are located in the cerebral ganglion, the other in the left pedal ganglion.The present findings suggest the presence of a system of neurons that contain CDCH or CDCH-like peptides. The role this system may play in the control of egg-laying and egg-laying behaviour is discussed.  相似文献   

10.
对扁玉螺(Neverita didyma)中枢神经系统的大体解剖和显微结构进行了初步研究。结果表明,扁玉螺中枢神经系统包括一对口球神经节、一对脑神经节、一对侧神经节、一对足神经节及一个脏神经节。各神经节均由神经节被膜、胞体区及中央纤维网三部分组成。左右脑神经节之间和左右足神经节之间的联合以及脑-侧、脑-足和侧-足神经节之间的连索均较短。足神经节有明显的分区现象。  相似文献   

11.
Cerebral neuron C-PR is thought to play an important role in the appetitive phase of feeding behavior ofAplysia. Here, we describe the organization of input and output pathways of C-PR. Intracellular dye fills of C-PR revealed extensive arborization of processes within the cerebral and the pedal ganglia. Numerous varicosities of varying sizes may provide points of synaptic inputs and outputs.Blocking polysynaptic transmission in the cerebral ganglion eliminated the sensory inputs to C-PR from stimuli applied to the rhinophores or tentacles, indicating that this input is probably mediated by cerebral interneurons. Identified cerebral mechanoafferent sensory neurons polysynaptically excite C-PR. Stimulation of the eyes and rhinophores with light depresses C-PR spike activity, and this effect also appears to be mediated by cerebral interneurons.C-PR has bilateral synaptic actions on numerous pedal ganglion neurons, and also has effects on cerebral neurons, including the MCC, Bn cells, CBIs and the contralateral C-PR. Although the somata of these cerebral neurons are physically close to C-PR, experiments using high divalent cation-containing solutions and cutting of various connectives indicated that the effects of C-PR on other cerebral ganglion neurons (specifically Bn cells and the MCC) are mediated by interneurons that project back to the cerebral ganglion via the pedal and pleural connectives. The indirect pathways of C-PR to other cerebral neurons may help to ensure that consummatory motor programs are not activated until the appropriate appetitive motor programs, mediated by the pedal ganglia, have begun to be expressed.  相似文献   

12.
Ablation of whole central nervous system (CNS) or pleurovisceral (PV) ganglia significantly inhibited O2 uptake, after 4 hr through 24 hr of the operation over sham controls. Replacement of PV in PV-less animals restored their metabolic rates to the normal level. O2 consumption of normal animals is significantly augmented by the macerates of CNS and PV, but not by cerebral and pleural ganglia, and body muscles. Reserpine was ineffective in lowering the O2 uptake of PV-removed animals unlike in normal, intact individuals. The possible implication of a neurohormone originating from PV ganglia controlling whole body O2 consumption, is discussed.  相似文献   

13.
The abdominal ganglion of Aplysia provides a convenient experimental system for cellular studies on the roles of peptides as chemical messengers in the nervous system. There are indications that the bag cells, a group of neuroendocrine cells, synthesize and release egg laying hormone (ELH), a peptide with an apparent molecular weight of 6000. Our recent investigations indicate that a burst of impulse activity in the bag cells produces five types of long-lasting responses, some excitatory, others inhibitory, in 26 identified neurons and 2 identified cell clusters located near the bag cells in the abdominal ganglion. The responses have slow, smoothly graded onsets, and many of them result in modulation of neuronal activity for 3 hours or more. Physiological and ultrastructural data support the hypothesis that they are induced by a bag cell hormone (or hormones) that is released into vascular and interstitial spaces of the ganglion to act on the target neurons. Local application of purified ELH to one of the target neurons provides evidence that the bag cell effect is mediated by ELH. Many of the target neurons are known to be parts of neuronal circuits that control specific behavioral and homeostatic processes. Since egg laying is initiated by the bag cell discharge and is associated with a stereotyped behavior pattern lasting several hours, the actions of these peptide-secreting neurons on the central nervous system may serve to regulate certain elements of behavior and homeostasis during egg laying.  相似文献   

14.
The nervous system is ectodermal in origin. All nerve ganglia arise separately by proliferation and later delamination from the ectoderm, not by invagination. They become secondarily connected to one another by commissures and connectives developing as extensions from the peripheral layer of ganglionic nerve cells. Rudiments of the cerebral, pedal, pleural and intestinal (parietal) ganglia arise almost simultaneously at a relatively early stage (Stage V). The cerebral ganglia develop from the ectoderm of the head plates. Rudiments of the pedal and pleural ganglia are separate at their inception. They later fuse (Stage VI) to form a pleuro-pedal ganglionic mass on each side. The 2 intestinal ganglia are symmetrical at the beginning, but they soon lose their symmetry as a result of torsion. The right ganglion crosses to the left over the gut and persists as the supraintestinal ganglion. The left or subintestinal ganglion shifts to the right and forward, and fuses with the right pleural ganglion (Stage VIII), thus obscuring the chiastoneury. The paired buccal and single visceral (abdominal) ganglia start differentiating in Stage VII. The former develop from the ectodermal wall of the stomodaeum, while the visceral ganglion delaminates from the right wall of the visceral sac, then shifts to the left during torsion. The statocysts develop early (Stage V) from 2 ectodermal invaginations on either side of the rudimentary foot. They later separate from the overlying ectoderm and statoconi appear in their lumina. Contrary to earlier reports on related ampullariids, the osphradium proved to be ontogenetically older than the mantle and mantle cavity. It starts differentiating as a thickened ectodermal plate in the right wall of the visceral sac (Stage V). During torsion, it becomes engulfed in the mantle cavity and shifts to the left side, then is carried forward as the mantlegrow. The eyes develop late (Stage IX) as ectodermal invaginations which rapidly separate from the ectoderm to form closed vesicles. Their cells start differentiating before hatching to form the retina, in which pigment is deposited, and the inner cornea. The lens is secreted in the lumen of the eye and grows by addition of concentric layers of secretion.  相似文献   

15.
Summary The central and visceral nervous systems of the cockroach Periplaneta americana were studied by means of the peroxidase-antiperoxidase immunocytochemical method, with the use of antibody to bovine pancreatic polypeptide (PP). PP-like immunoreactive neuron somata are most numerous in the brain; at least 6 pairs of cell groups occur in clearly defined regions. Three pairs of cells each are also present in the suboesophageal ganglion and the thoracic ganglia, one pair of a single cell each in the first abdominal and the frontal ganglia, and 4 to 6 pairs of single cells in the terminal ganglion. No reactive cells were found in the retrocerebral complex and the second to the fifth abdominal ganglia. The axons containing PP-like immunoreactivity issue many branches that are distributed in the entire brain-retrocerebral complex, ventral cord, and visceral nervous system. PP-like immunoreactive material produced in the brain seems to be transported by three routes: protocerebrum to corpora cardiaca (-allata) through the nervi corporis cardiaci, tritocerebrum to visceral nervous system through frontal commissures, and to ventral cord through circumoesophageal connectives.A possible homology between the mammalian brain-GEP (gastro-enteropancreatic) system and the brain-midgut system of this insect is discussed.  相似文献   

16.
Enzyme histochemistry and immunocytochemistry were used to determine the distribution of neurons in the snail Helix aspersa which exhibited nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase activity and/or immunoreactivity to nitric oxide synthase (NOS). NADPH diaphorase-positive cells and fibres were distributed extensively throughout the central and peripheral nervous system. NADPH diaphorase-positive fibres were present in all neuropil regions of the central and peripheral ganglia, in the major interganglionic connectives and in peripheral nerve roots. NADPH diaphorase-positive cell bodies were found consistently in the eyes, the lips, the tentacular ganglia and the procerebral lobes of the cerebral ganglia; staining of cell bodies elsewhere in the nervous system was capricious. The distribution of NOS-like immunoreactivity differed markedly from that of NADPH diaphorase activity. Small clusters of cells which exhibited NOS-like immunoreactivity were present in the cerebral and pedal ganglia; fibres which exhibited NOS-like immunoreactivity were present in restricted regions of the neuropil of the central ganglia. The disjunct distributions of NADPH diaphorase activity and NOS-like immunoreactivity in the neurvous system of Helix suggest that the properties of neuronal NOS in molluscs may differ sigificantly from those described previously for vertebrate animals.  相似文献   

17.
Distribution of GABA-like immunoreactive neurons in the slug Limax maximus   总被引:2,自引:0,他引:2  
Summary Immunohistochemical techniques were used to study the distribution of gamma-amino butyric acid (GABA)-like immunoreactive neurons in the nervous system of the slug Limax maximus. Approximately 170 GABA-like immunoreactive cell bodies were found in the central nervous system. These were located in the cerebral, buccal and pedal ganglia. Most GABA-like immunoreactive neurons had small cell bodies, which were aggregated into discrete clusters within the cerebral and pedal ganglia. Three pairs of longer, uniquely identifiable, GABA-like immunoreactive cells were found in the cerebral ganglion. GABA-like immunoreactive nerve fibres were also found in all of the central ganglia but were absent from peripheral nerves. These results suggest that GABA acts as a central neurotransmitter in the slug. The possible roles of GABA-ergic neurotransmission in the slug are discussed.  相似文献   

18.
Corticotropin-releasing factor (CRF) and urocortin (Ucn) are both members of the CRF neuropeptide family. The distribution of Ucn- and CRF-like immunoreactive (ir) structures in the central nervous system of several vertebrate species has been studied, but little is known about that in non-vertebrates. We used a highly specific polyclonal antibody against rat Ucn and CRF to determine and compare the distribution of Ucn- and CRF-like immunoreactivity in the earthworm nervous system. Several Ucn- and CRF-like ir perikarya were described in the cerebral ganglion, subesophageal and ventral cord ganglia. The majority of Ucn-like ir cells were found in the ventral ganglia, whereas CRF-like ir cells were most abundant in the cerebral ganglion. Scattered Ucn- and CRF-like ir varicose fiber terminals were seen in all areas of the earthworm central nervous system. Ucn-like ir cell bodies and fiber terminals were also demonstrated in the pharyngeal wall. No co-localization of Ucn- and CRF-like ir nervous structures were observed. This study provided morphological evidence that Ucn- and CRF-like neurosecretory products exist in the earthworm central nervous system. Furthermore, both the distribution and morphology of Ucn- and CRF-like ir structures were distinct, therefore, it can be hypothesized that these neuropeptides exert different neurendocrine functions in the earthworm nervous system.  相似文献   

19.
The distribution of cholecystokinin and gastrin-like immunoreactive cell bodies and fibers in the nervous system of 2 annelid worms, Lumbricus terrestris and Eisenia fetida, has been studied by means of immunohistochemistry. The cerebral ganglion contains 170-250, the subesophageal ganglion contains 120-150, and the ventral ganglia contain 50-75 cholecystokinin immunoreactive cells, that represent 8-12%, 8-10% and 4-5% of the total cell number, respectively. The anti-gastrin serum stained 330-360 nerve cells in the cerebral, 32-46 in the subesophageal and 7-25 in the ventral cord ganglia, representing 15-16%, 2-3% and 0.5-2% of the total cell number. Immunopositivity was found with both antisera in the enteric nervous system, where the stomatogastric ganglia and the enteric plexus contain immunoreactive cells and fibers. Immunopositive cells were found in the epithelial and subepithelial cells, as well as in nerve cells innervating the muscular layer of the gastrointestinal tube. Various epidermal sensory cells also displayed strong immunoreactivity. According to our findings and the results of several functional studies, it is suggested that in annelids cholecystokinin- and gastrin-like peptides may be involved in digestive regulation, sensory processes and central integrating processes.  相似文献   

20.
Immunohistochemical techniques were used to study the distribution of cholinergic neurons containing choline acetyltransferase of the common type (cChAT), the synthetic enzyme of acetylcholine, in the central nervous system of the slug Limax maximus and Limax valentianus. Because the antiserum applied here was raised against a recombinant protein encoded by exons 7 and 8 of the rat gene for ChAT, three methods were used in order to validate antibody specificity for the Limax counterpart enzyme. Western blot combined with ChAT activity assay following native gel electrophoresis and immunoprecipitation analysis both indicated that immunoreactive Limax brain molecules were capable of synthesizing acetylcholine. Western blot after denatured gel electrophoresis of Limax brain extracts revealed a single band of about 67kDa. All findings obtained with these three methods clearly indicated that the antiserum effectively recognized Limax cChAT. 1400 neuronal cell bodies positive for cChAT, mainly small to medium-sized, were found in various brain regions in the buccal, cerebral, pleural, parietal, visceral and pedal ganglia. cChAT immunoreactive nerve fibers were distributed extensively in the neuropil, connectives and commissures of these central ganglia. The map of cChAT-positive cells provided here are valuable for understanding the cholinergic mechanism in the slug brain, as well as giving an important hint to clarifying the mechanisms of learning and memory in higher vertebrates including humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号