首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saxena A  Hur RS  Luo C  Doctor BP 《Biochemistry》2003,42(51):15292-15299
Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.  相似文献   

2.
The intracellular C-terminal domain (CTD) of KcsA, a bacterial homotetrameric potassium channel, is a 40-residue-long segment that natively adopts a helical bundle conformation with 4-fold symmetry. A hallmark of KcsA behavior is pH-induced conformational change, which leads to the opening of the channel at acidic pH. Previous studies have reached conflicting conclusions as to the role of the CTD in this transition. Here, we investigate the involvement of this domain in pH-mediated channel opening by NMR using a soluble peptide corresponding to residues 128-160 of the CTD (CTD34). At neutral pH, CTD34 exhibits concentration-dependent spectral changes consistent with oligomer formation. We prove this slowly tumbling species to be a tetramer with a dissociation constant of (2.0±0.5)×10(-)(11)?M(3) by NMR and sedimentation equilibrium experiments. Whereas monomeric CTD34 is only mildly helical, secondary chemical shifts prove that the tetrameric species adopts a tight native-like helical bundle conformation. The tetrameric species undergoes pH-dependent dissociation, and CTD34 is fully monomeric below pH?5.0. The structural basis for this phenomenon is the destabilization of the tetrameric CTD34 by protonation of residue H145 in the monomeric form of the peptide. We conclude that (i) the CTD34 peptide is independently capable of forming a tetrameric helical bundle, and (ii) this structurally significant conformational shift is modulated by the effects of solution pH on residue H145. Therefore, the involvement of this domain in the pH gating of the channel is strongly suggested.  相似文献   

3.
One of the functions of MutY from Escherchia coli is removal of adenine mispaired with 7,8-dihydro-8-oxoguanine (8-oxoG), a common lesion in oxidatively damaged DNA. MutY is composed of two domains: the larger N-terminal domain (p26) contains the catalytic properties of the enzyme while the C-terminal domain (p13) affects substrate recognition and enzyme turnover. On the basis of sequence analyses, it has been recently suggested that the C-terminal domain is distantly related to MutT, a dNTPase which hydrolyzes 8-oxo-dGTP [Noll et al. (1999) Biochemistry 38, 6374-6379]. We have studied the solution structure of the C-terminal domain of MutY by NMR and find striking similarity with the reported solution structure of MutT. Despite low sequence identity between the two proteins, they have similar secondary structure and topology. The C-terminal domain of MutY is composed of two alpha-helices and five beta-strands. The NOESY data indicate that the protein has two beta-sheets. MutT is also a mixed alpha/beta protein with two helices and two beta-sheets composed of five strands. The secondary structure elements are similarly arranged in the two proteins.  相似文献   

4.
The C-terminal region of sulfate transporters from plants and animals belonging to the SLC26 family members shares a weak but significant similarity with the Bacillus sp. anti-anti-sigma protein SpoIIAA, thus defining the STAS domain (sulfate transporter and anti-sigma antagonist). The present study is a structure/function analysis of the STAS domain of SULTR1.2, an Arabidopsis thaliana sulfate transporter. A three-dimensional model of the SULTR1.2 STAS domain was built which indicated that it shares the SpoIIAA folds. Moreover, the phosphorylation site, which is necessary for SpoIIAA activity, is conserved in the SULTR1.2 STAS domain. The model was used to direct mutagenesis studies using a yeast mutant defective for sulfate transport. Truncation of the whole SULTR1.2 STAS domain resulted in the loss of sulfate transport function. Analyses of small deletions and mutations showed that the C-terminal tail of the SULTR1.2 STAS domain and particularly two cysteine residues plays an important role in sulfate transport by SULTR1.2. All the substitutions made at the putative phosphorylation site Thr-587 led to a complete loss of the sulfate transport function of SULTR1.2. The reduction or suppression of sulfate transport of the SULTR1.2 mutants in yeast was not due to an incorrect targeting to the plasma membrane. Both our three-dimensional modeling and mutational analyses strengthen the hypothesis that the SULTR1.2 STAS domain is involved in protein-protein interactions that could control sulfate transport.  相似文献   

5.
6.
Kim TD  Paik SR  Yang CH 《Biochemistry》2002,41(46):13782-13790
Aggregation of alpha-synuclein is thought to play a major role in the pathogenesis of Parkinson's disease (PD), which is characterized by the presence of intracytoplasmic Lewy bodies (LB) in the brain. alpha-Synuclein and its deletion mutants are largely unfolded proteins with random coil structures as revealed by CD spectra, fluorescence spectra, gel filtration chromatography, and ultracentrifugation. On the basis of its highly unfolded and flexible conformation, we have investigated the chaperone-like activity of alpha-synuclein in vitro. In our experiments, alpha-synuclein inhibited the aggregation of model substrates and protected the catalytic activity of alcohol dehydrogenase and rhodanese during heat stress. In addition, alpha-synuclein inhibited the initial aggregation of reduced/denatured lysozyme on the refolding pathway. Interestingly, deletion of the C-terminal regions led to the abolishment of chaperone activity, although largely unstructured conformations are maintained. Moreover, alpha-synuclein could inhibit the aggregation of various Escherichia coli cellular proteins during heat stress, and C-terminal deletion mutants could not provide any protection to these cellular proteins. Results with synthetic C-terminal peptides and C-terminal deletion mutants suggest that the second acidic repeat, (125)YEMPSEEGYQDYEPEA(140), is important for the chaperone activity of alpha-synuclein, and C-terminal deletion leads to the facilitated aggregation with the elimination of chaperone activity.  相似文献   

7.
Ataxin-3 belongs to the family of polyglutamine proteins, which are associated with nine different neurodegenerative disorders. Relatively little is known about the structural and functional properties of ataxin-3, and only recently have these aspects of the protein begun to be explored. We have performed a preliminary investigation into the conserved N-terminal domain of ataxin-3, termed Josephin. We show that Josephin is a monomeric domain which folds into a globular conformation and possesses ubiquitin protease activity. In addition, we demonstrate that the presence of the polyglutamine region of the protein does not alter the structure of the protein. However, its presence destabilizes the Josephin domain. The implications of these data in the pathogenesis of polyglutamine repeat proteins are discussed.  相似文献   

8.
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.  相似文献   

9.
MutS protein binds to DNA and specifically recognizes mismatched or small looped out heteroduplex DNA. In order to elucidate its structure-function relationships, the domain structure of Thermus thermophilus MutS protein was studied by performing denaturation experiments and limited proteolysis. The former suggested that T. thermophilus MutS consists of at least three domains with estimated stabilities of 12.3, 22.9 and 30.7 kcal/mol and the latter revealed that it consists of four domains: A1 (N-terminus to residue 130), A2 (131-274), B (275-570) and C (571 to C-terminus). A gel retardation assay indicated that T.thermophilus MutS interacts non-specifically with double-stranded (ds), but not single-stranded DNA. Among the proteolytic fragments, the B domain bound to dsDNA. On the basis of these results we have proposed the domain organization of T. thermophilus MutS and putative roles of these domains.  相似文献   

10.
FlhA is an integral membrane component of the Salmonella type III flagellar protein export apparatus. It consists of 692 amino acid residues and has two domains: the N-terminal transmembrane domain consisting of the first 327 amino acid residues, and the C-terminal cytoplasmic domain (FlhAC) comprising the remainder. Here, we have investigated the structure and function of FlhAC. DNA sequence analysis revealed that temperature-sensitive flhA mutations, which abolish flagellar protein export at the restrictive temperature, lie in FlhAC, indicating that FlhAC plays an important role in the protein export process. Limited proteolysis of purified His-FlhAC by trypsin and V8 showed that only a small part of FlhAC near its N terminus (residues 328-351) is sensitive to proteolysis. FlhAC38K, the smallest fragment produced by V8 proteolysis, is monomeric and has a spherical shape as judged by analytical gel filtration chromatography and analytical ultracentrifugation. The far-UV CD spectrum of FlhAC38K showed that it contains considerable amounts of secondary structure. FlhA(Delta328-351) missing residues 328-351 failed to complement the flhA mutant, indicating that the proteolytically sensitive region of FlhA is important for its function. FlhA(Delta328-351) was inserted into the cytoplasmic membrane, and exerted a strong dominant negative effect on wild-type cells, suggesting that it retains the ability to interact with other export components within the cytoplasmic membrane. Overproduced FlhAC38K inhibited both motility and flagellar protein export of wild-type cells to some degree, suggesting that FlhAC38K is directly involved in the translocation reaction. Amino acid residues 328-351 of FlhA appear to be a relatively flexible linker between the transmembrane domain and FlhAC38K.  相似文献   

11.
12.
The Escherichia coli mispair-binding protein MutS forms dimers and tetramers in vitro, although the functional form in vivo is under debate. Here we demonstrate that the MutS tetramer is extended in solution using small angle x-ray scattering and the crystal structure of the C-terminal 34 amino acids of MutS containing the tetramer-forming domain fused to maltose-binding protein (MBP). Wild-type C-terminal MBP fusions formed tetramers and could bind MutS and MutS-MutL-DNA complexes. In contrast, D835R and R840E mutations predicted to disrupt tetrameric interactions only allowed dimerization of MBP. A chromosomal MutS truncation mutation eliminating the dimerization/tetramerization domain eliminated mismatch repair, whereas the tetramer-disrupting MutS D835R and R840E mutations only modestly affected MutS function. These results demonstrate that dimerization but not tetramerization of the MutS C terminus is essential for mismatch repair.  相似文献   

13.
ATP sulfurylase catalyzes the first step in the activation of sulfate by transferring the adenylyl-moiety (AMP approximately ) of ATP to sulfate to form adenosine 5'-phosphosulfate (APS) and pyrophosphate (PP(i)). Subsequently, APS kinase mediates transfer of the gamma-phosphoryl group of ATP to APS to form 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and ADP. The recently determined crystal structure of yeast ATP sulfurylase suggests that its C-terminal domain is structurally quite independent from the other domains, and not essential for catalytic activity. It seems, however, to dictate the oligomerization state of the protein. Here we show that truncation of this domain results in a monomeric enzyme with slightly enhanced catalytic efficiency. Structural alignment of the C-terminal domain indicated that it is extremely similar in its fold to APS kinase although not catalytically competent. While carrying out these structural and functional studies a surface groove was noted. Careful inspection and modeling revealed that the groove is sufficiently deep and wide, as well as properly positioned, to act as a substrate channel between the ATP sulfurylase and APS kinase-like domains of the enzyme.  相似文献   

14.
SWIRM is a conserved domain found in several chromatin-associated proteins. Based on their sequences, the SWIRM family members can be classified into three subfamilies, which are represented by Swi3, LSD1, and Ada2. Here we report the SWIRM structure of human MYb-like, Swirm and Mpn domain-containing protein-1 (MYSM1). The MYSM1 SWIRM structure forms a compact HTH-related fold comprising five alpha-helices, which best resembles the Swi3 SWIRM structure, among the known SWIRM structures. The MYSM1 and Swi3 SWIRM structures are more similar to the LSD1 structure than the Ada2alpha structure. The SWIRM domains of MYSM1 and LSD1 lacked DNA binding activity, while those of Ada2alpha and the human Swi3 counterpart, SMARCC2, bound DNA. The dissimilarity in the DNA-binding ability of the MYSM1 and SMARCC2 SWIRM domains might be due to a couple of amino acid differences in the last helix. These results indicate that the SWIRM family has indeed diverged into three structural subfamilies (Swi3/MYSM1, LSD1, and Ada2 types), and that the Swi3/MYSM1-type subfamily has further diverged into two functionally distinct groups. We also solved the structure of the SANT domain of MYSM1, and demonstrated that it bound DNA with a similar mode to that of the c-Myb DNA-binding domain.  相似文献   

15.
16.
Liu J  Zheng Q  Deng Y  Li Q  Kallenbach NR  Lu M 《Biochemistry》2007,46(51):14951-14959
Predictive understanding of how the folded, functional shape of a native protein is encoded in the linear sequence of its amino acid residues remains an unsolved challenge in modern structural biology. Antiparallel four-stranded coiled coils are relatively simple protein structures that embody a heptad sequence repeat and rich diversity for tertiary packing of alpha-helices. To explore specific sequence determinants of the lac repressor coiled-coil tetramerization domain, we have engineered a set of buried nonpolar side chains at the a-, d-, and e-positions into the hydrophobic interior of the dimeric GCN4 leucine zipper. Circular dichroism and equilibrium ultracentrifugation studies show that this core variant (GCN4-pAeLV) forms a stable tetrameric structure with a reversible and highly cooperative thermal unfolding transition. The X-ray crystal structure at 1.9 A reveals that GCN4-pAeLV is an antiparallel four-stranded coiled coil of the lac repressor type in which the a, d, and e side chains associate by means of combined knobs-against-knobs and knobs-into-holes packing with a characteristic interhelical offset of 0.25 heptad. Comparison of the side chain shape and packing in the antiparallel tetramers shows that the burial of alanine residues at the e positions between the neighboring helices of GCN4-pAeLV dictates both the antiparallel orientation and helix offset. This study fills in a gap in our knowledge of the determinants of structural specificity in antiparallel coiled coils and improves our understanding of how specific side chain packing forms the teritiary structure of a functional protein.  相似文献   

17.
Mammalian chitinase, a chitinolytic enzyme expressed by macrophages, has been detected in atherosclerotic plaques and is elevated in blood and tissues of guinea pigs infected with Aspergillus. Its normal physiological function is unknown. To understand how the enzyme interacts with its substrate, we have characterized the chitin-binding domain. The C-terminal 49 amino acids make up the minimal sequence required for chitin binding activity. The absence of this domain does not affect the ability of the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes hydrolysis of insoluble chitin. Within the minimal chitin-binding domain are six cysteines; mutation of any one of these to serine results in complete loss of chitin binding activity. Analysis of purified recombinant chitin-binding domain revealed the presence of three disulfide linkages. The recombinant domain binds specifically to chitin but does not bind chitosan, cellulose, xylan, beta-1, 3-glucan, beta-1,3-1,4-glucan, or mannan. Fluorescently tagged chitin-binding domain was used to demonstrate chitin-specific binding to Saccharomyces cerevisiae, Candida albicans, Mucor rouxii, and Neurospora crassa. These experiments define structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble chitin and demonstrate relevant binding within the context of the fungal cell wall.  相似文献   

18.
The capsid protein of HIV-1 (p24) (CA) forms the mature capsid of the human immunodeficiency virus. Capsid assembly involves hexamerization of the N-terminal domain and dimerization of the C-terminal domain of CA (CAC), and both domains constitute potential targets for anti-HIV therapy. CAC homodimerization occurs mainly through its second helix, and it is abolished when its sole tryptophan is mutated to alanine. This mutant, CACW40A, resembles a transient monomeric intermediate formed during dimerization. Its tertiary structure is similar to that of the subunits in the dimeric, non-mutated CAC, but the segment corresponding to the second helix samples different conformations. The present study comprises a comprehensive examination of the CACW40A internal dynamics. The results obtained, with movements sampling a wide time regime (from pico- to milliseconds), demonstrate the high flexibility of the whole monomeric protein. The conformational exchange phenomena on the micro-to-millisecond time scale suggest a role for internal motions in the monomer-monomer interactions and, thus, flexibility of the polypeptide chain is likely to contribute to the ability of the protein to adopt different conformational states, depending on the biological environment.  相似文献   

19.
The Src homology 2 domain-containing protein tyrosine phosphatases SHP-1 and SHP-2 play an important role in many intracellular signaling pathways. Both SHP-1 and SHP-2 have been shown to interact with a diverse range of cytosolic and membrane-bound signaling proteins. Generally, SHP-1 and SHP-2 perform opposing roles in signaling processes; SHP-1 acts as a negative regulator of transduction in hemopoietic cells, whereas SHP-2 acts as a positive regulator. Intriguingly, SHP-1 has been proposed to play a positive regulating role in nonhemopoietic cells, although the mechanisms for this are not understood. Here we show that green fluorescent protein-tagged SHP-1 is unexpectedly localized within the nucleus of transfected HEK293 cells. In contrast, the highly related SHP-2 protein is more abundant within the cytoplasm of transfected cells. In accordance with this, endogenous SHP-1 is localized within the nucleus of several other nonhemopoietic cell types, whereas SHP-2 is distributed throughout the cytoplasm. In contrast, SHP-1 is confined to the cytoplasm of hemopoietic cells, with very little nuclear SHP-1 evident. Using chimeric SHP proteins and mutagenesis studies, the nuclear localization signal of SHP-1 was identified within the C-terminal domain of SHP-1 and found to consist of a short cluster of basic amino acids (KRK). Although the KRK motif resembles half of a bipartite nuclear localization signal, it appears to function independently and is absolutely required for nuclear import. Our findings show that SHP-1 and SHP-2 are distinctly localized within nonhemopoietic cells, with the localization of SHP-1 differing dramatically between nonhemopoietic and hemopoietic cell lineages. This implies that SHP-1 nuclear import is a tightly regulated process and indicates that SHP-1 may possess novel nuclear targets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号