首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biochemical functions of intracellular and plasma membrane Ca2+-transporting ATPases in the control of cytosolic and organellar Ca2+ levels are well established, but the physiological roles of specific isoforms are less well understood. There appear to be three different types of Ca2+ pumps in mammalian tissues: the sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs), which sequester Ca2+ within the endoplasmic or sarcoplasmic reticulum, the plasma membrane Ca2+-ATPases (PMCAs), which extrude Ca2+ from the cell, and the putative secretory pathway Ca2+-ATPase (SPCA), the function of which is poorly understood. This review describes the results of recent analyses of mouse models with null mutations in the genes encoding SERCA and PMCA isoforms and genetic studies of SERCA and SPCA dysfunction in both humans and model organisms. These studies are yielding important insights regarding the physiological functions of individual Ca2+-transporting ATPases in vivo.  相似文献   

2.
N-Terminal deletions modify the Cu2+ binding site in amyloid-beta   总被引:2,自引:0,他引:2  
Karr JW  Akintoye H  Kaupp LJ  Szalai VA 《Biochemistry》2005,44(14):5478-5487
Copper is implicated in the in vitro formation and toxicity of Alzheimer's disease amyloid plaques containing the beta-amyloid (Abeta) peptide (Bush, A. I., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11934). By low temperature electron paramagnetic resonance (EPR) spectroscopy, the importance of the N-terminus in creating the Cu(2+) binding site in native Abeta has been examined. Peptides that contain the proposed binding site for Cu(2+)-three histidines (H6, H13, and H14) and a tyrosine (Y10)-but lack one to three N-terminal amino acids, do not bind Cu(2+) in the same coordination environment as the native peptide. EPR spectra of soluble Abeta with stoichiometric amounts of Cu(2+) show type 2 Cu(2+) EPR spectra for all peptides. The ligand donor atoms to Cu(2+) are 3N1O when Cu(2+) is bound to any of the Abetapeptides (Abeta16, Abeta28, Abeta40, and Abeta42) that contain the first 16 amino acids of full-length Abeta. When a Y10F mutant of Abeta is used, the coordination environment for Cu(2+) remains 3N1O and Cu(2+) EPR spectra of this mutant are identical to the wild-type spectra. Isotopic labeling experiments show that water is not the O-atom donor to Cu(2+) in Abeta fibrils or in the Y10F mutant. Further, we find that Cu(2+) cannot be removed from Cu(2+)-containing fibrils by washing with buffer, but that Cu(2+) binds to fibrils initially assembled without Cu(2+) in the same coordination environment as in fibrils assembled with Cu(2+). Together, these results indicate (1) that the O-atom donor ligand to Cu(2+) in Abeta is not tyrosine, (2) that the native Cu(2+) binding site in Abeta is sensitive to small changes at the N-terminus, and (3) that Cu(2+) binds to Abetafibrils in a manner that permits exchange of Cu(2+) into and out of the fibrillar architecture.  相似文献   

3.
The baker's yeast Saccharomyces cerevisiae is a well-developed, versatile, and widely used model organism. It offers a compact and fully sequenced genome, tractable genetics, simple and inexpensive culturing conditions, and, importantly, a conservation of basic cellular machinery and signal transducing pathways with higher eukaryotes. In this review, we describe recent technical advances in the heterologous expression of proteins in yeast and illustrate their application to the study of the Ca2+ homeostasis machinery, with particular emphasis on Ca2+-transporting ATPases. Putative Ca2+-ATPases in the newly sequenced genomes of organisms such as parasites, plants, and vertebrates have been investigated by functional complementation of an engineered yeast strain lacking endogenous Ca2+ pumps. High-throughput screens of mutant phenotypes to identify side chains critical for ion transport and selectivity have facilitated structure-function analysis, and genomewide approaches may be used to dissect cellular pathways involved in Ca2+ transport and trafficking. The utility of the yeast system is demonstrated by rapid advances in the study of the emerging family of Golgi/secretory pathway Ca2+,Mn2+-ATPases (SPCA). Functional expression of human SPCA1 in yeast has provided insight into the physiology, novel biochemical characteristics, and subcellular localization of this pump. Haploinsufficiency of SPCA1 leads to Hailey-Hailey disease (HDD), a debilitating blistering disorder of the skin. Missense mutations, identified in patients with HHD, may be conveniently assessed in yeast for loss-of-function phenotypes associated with the disease. Saccharomyces cerevisiae; calcium ion; transporters; functional complementation  相似文献   

4.
Cu(+)-ATPases drive metal efflux from the cell cytoplasm. Paramount to this function is the binding of Cu(+) within the transmembrane region and its coupled translocation across the permeability barrier. Here, we describe the two transmembrane Cu(+) transport sites present in Archaeoglobus fulgidus CopA. Both sites can be independently loaded with Cu(+). However, their simultaneous occupation is associated with enzyme turnover. Site I is constituted by two Cys in transmembrane segment (TM) 6 and a Tyr in TM7. An Asn in TM7 and Met and Ser in TM8 form Site II. Single site x-ray spectroscopic analysis indicates a trigonal coordination in both sites. This architecture is distinct from that observed in Cu(+)-trafficking chaperones and classical cuproproteins. The high affinity of these sites for Cu(+) (Site I K(a)=1.3 fM(-1), Site II K(a)=1.1 fM(-1)), in conjunction with reversible direct Cu(+) transfer from chaperones, points to a transport mechanism where backward release of free Cu(+) to the cytoplasm is largely prevented.  相似文献   

5.
To study domain organization and movements in the reaction cycle of heavy metal ion pumps, CopA, a bacterial Cu+-ATPase from Thermotoga maritima was cloned, overexpressed, and purified, and then subjected to limited proteolysis using papain. Stable analogs of intermediate states were generated using AMPPCP as a nonhydrolyzable ATP analog and AlFx as a phosphate analog, following conditions established for Ca2+-ATPase (SERCA1). Characteristic digestion patterns obtained for different analog intermediates show that CopA undergoes domain rearrangements very similar to those of SERCA1. Digestion sites were identified on the loops connecting the A-domain and the transmembrane helices M2 and M3 as well as on that connecting the N-terminal metal binding domain (NMBD) and the first transmembrane helix, Ma. These digestion sites were protected in the E1P.ADP and E2P analogs, whereas the M2-A-domain loop was cleaved specifically in the absence of ions to be transported, just as in SERCA1. ATPase activity was lost when the link between the NMBD and the transmembrane domain was cleaved, indicating that the NMBD plays a critical role in ATP hydrolysis in T. maritima CopA. The change in susceptibility of the loop between the NMBD and Ma helix provides evidence that the NMBD is associated to the A-domain and recruited into domain rearrangements and that the Ma helix is the counterpart of the M1 helix in SERCA1 and Mb and Mc are uniquely inserted before M2.  相似文献   

6.
7.
In bacteria, most Cu(+) -ATPases confer tolerance to Cu by driving cytoplasmic metal efflux. However, many bacterial genomes contain several genes coding for these enzymes suggesting alternative roles. Pseudomonas aeruginosa has two structurally similar Cu(+) -ATPases, CopA1 and CopA2. Both proteins are essential for virulence. Expressed in response to high Cu, CopA1 maintains the cellular Cu quota and provides tolerance to this metal. CopA2 belongs to a subgroup of ATPases that are expressed in association with cytochrome oxidase subunits. Mutation of copA2 has no effect on Cu toxicity nor intracellular Cu levels; but it leads to higher H(2) O(2) sensitivity and reduced cytochrome oxidase activity. Mutation of both genes does not exacerbate the phenotypes produced by single-gene mutations. CopA1 does not complement the copA2 mutant strain and vice versa, even when promoter regions are exchanged. CopA1 but not CopA2 complements an Escherichia coli strain lacking the endogenous CopA. Nevertheless, transport assays show that both enzymes catalyse cytoplasmic Cu(+) efflux into the periplasm, albeit CopA2 at a significantly lower rate. We hypothesize that their distinct cellular functions could be based on the intrinsic differences in transport kinetic or the likely requirement of periplasmic partner Cu-chaperone proteins specific for each Cu(+) -ATPase.  相似文献   

8.
Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na(+) channel (ENaC). Whereas PI(3,4,5)P(3) directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of gamma-mENaC just following the second trans-membrane domain (residues 569-583) important to PI(3,4,5)P(3) binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P(3), increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P(3) binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P(3). Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within gamma-mENaC as being part of a functional PI(3,4,5)P(3) binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.  相似文献   

9.
Aerobic heterotrophs were isolated from subsurface soil samples obtained from the U.S. Department of Energy's (DOE) Field Research Center (FRC) located at Oak Ridge, Tenn. The FRC represents a unique, extreme environment consisting of highly acidic soils with co-occurring heavy metals, radionuclides, and high nitrate concentrations. Four hundred isolates obtained from contaminated soil were assayed for heavy metal resistance, and a smaller subset was assayed for tolerance to uranium. The vast majority of the isolates were gram-positive bacteria and belonged to the high-G+C- and low-G+C-content genera Arthrobacter and Bacillus, respectively. Genomic DNA from a randomly chosen subset of 50 Pb-resistant (Pb(r)) isolates was amplified with PCR primers specific for P(IB)-type ATPases (i.e., pbrA/cadA/zntA). A total of 10 pbrA/cadA/zntA loci exhibited evidence of acquisition by horizontal gene transfer. A remarkable dissemination of the horizontally acquired P(IB)-type ATPases was supported by unusual DNA base compositions and phylogenetic incongruence. Numerous Pb(r) P(IB)-type ATPase-positive FRC isolates belonging to the genus Arthrobacter tolerated toxic concentrations of soluble U(VI) (UO(2)(2+)) at pH 4. These unrelated, yet synergistic, physiological traits observed in Arthrobacter isolates residing in the contaminated FRC subsurface may contribute to the survival of the organisms in such an extreme environment. This study is, to the best of our knowledge, the first study to report broad horizontal transfer of P(IB)-type ATPases in contaminated subsurface soils and is among the first studies to report uranium tolerance of aerobic heterotrophs obtained from the acidic subsurface at the DOE FRC.  相似文献   

10.
Liu J  Dutta SJ  Stemmler AJ  Mitra B 《Biochemistry》2006,45(3):763-772
ZntA, a P1B-type ATPase, confers resistance specifically to Pb2+, Zn2+, and Cd2 in Escherichia coli. Inductively coupled plasma mass spectrometry measurements show that ZntA binds two metal ions with high affinity, one in the N-terminal domain and another in the transmembrane domain. Both sites can bind monovalent and divalent metal ions. Two proteins, deltaN-ZntA, in which the N-terminal domain is deleted, and C59A/C62A-ZntA, in which the N-terminal metal-binding site is disabled by site-specific mutagenesis, can only bind one metal ion. Because C59A/C62A-ZntA can bind a metal ion at the transmembrane site, the N-terminal domain does not block direct access of metal ions to it from the cytosol. A third mutant protein, C392A/C394A-ZntA, in which cysteines from the conserved CPC motif in transmembrane helix 6 are altered, binds metal ions only at the N-terminal site, indicating that both these cysteines form part of the transmembrane site. The metal affinity of the transmembrane site was determined in deltaN-ZntA and C59A/C62A-ZntA by competition titration using a metal ion indicator and by tryptophan fluorescence quenching. The binding affinity for the physiological substrates, Zn2+, Pb2+, and Cd2+, as well as for the extremely poor substrates, Cu2+, Ni2+, and Co2+, range from 10(6)-10(10) M(-1), and does not correlate with the metal selectivity shown by ZntA. Selectivity in ZntA possibly results from differences in metal-binding geometry that produce different structural responses. The affinity of the transmembrane site for metal ions is of similar magnitude to that of the N-terminal site [Liu J. et al. (2005) Biochemistry 44, 5159-5167]; thus, metal transfer between them would be facile.  相似文献   

11.
Adamczyk M  Poznański J  Kopera E  Bal W 《FEBS letters》2007,581(7):1409-1416
UV spectroscopy demonstrated that chicken mononucleosomes bind Co(II) and Zn(II) ions at submicromolar concentrations in a tetrahedral mode, at a conserved zinc finger-like site, composed of Cys110 and His113 residues of both H3 molecules. Neither of these metal ions substituted for another, indicating a limited binding reversibility. Molecular modeling indicated that the tetrahedral site is formed by unhindered rotations around Calpha-Cbeta bonds in the side chains of the zinc binding residues. The resulting local rearrangement of the protein structure shields the bound metal ion from the solvent, explaining the observed lack of reversibility of the binding. Consequences of these findings for zinc homeostasis, metal toxicology and nucleosomal regulation are discussed.  相似文献   

12.
Copper is an essential trace element that may serve as a signaling molecule in the nervous system. Here we show that extracellular Cu2+ is a potent inhibitor of BK and Shaker K+ channels. At low micromolar concentrations, Cu2+ rapidly and reversibly reduces macrosocopic K+ conductance (G(K)) evoked from mSlo1 BK channels by membrane depolarization. GK is reduced in a dose-dependent manner with an IC50 and Hill coefficient of 2 microM and 1.0, respectively. Saturating 100 microM Cu2+ shifts the GK-V relation by +74 mV and reduces G(Kmax) by 27% without affecting single channel conductance. However, 100 microM Cu2+ fails to inhibit GK when applied during membrane depolarization, suggesting that Cu2+ interacts poorly with the activated channel. Of other transition metal ions tested, only Zn2+ and Cd2+ had significant effects at 100 microM with IC(50)s > 0.5 mM, suggesting the binding site is Cu2+ selective. Mutation of external Cys or His residues did not alter Cu2+ sensitivity. However, four putative Cu2+-coordinating residues were identified (D133, Q151, D153, and R207) in transmembrane segments S1, S2, and S4 of the mSlo1 voltage sensor, based on the ability of substitutions at these positions to alter Cu2+ and/or Cd2+ sensitivity. Consistent with the presence of acidic residues in the binding site, Cu2+ sensitivity was reduced at low extracellular pH. The three charged positions in S1, S2, and S4 are highly conserved among voltage-gated channels and could play a general role in metal sensitivity. We demonstrate that Shaker, like mSlo1, is much more sensitive to Cu2+ than Zn2+ and that sensitivity to these metals is altered by mutating the conserved positions in S1 or S4 or reducing pH. Our results suggest that the voltage sensor forms a state- and pH-dependent, metal-selective binding pocket that may be occupied by Cu2+ at physiologically relevant concentrations to inhibit activation of BK and other channels.  相似文献   

13.
The hammerhead ribozyme crystal structure identified a specific metal ion binding site referred to as the P9/G10.1 site. Although this metal ion binding site is approximately 20 A away from the cleavage site, its disruption is highly deleterious for catalysis. Additional published results have suggested that the pro-R(P) oxygen at the cleavage site is coordinated by a metal ion in the reaction's transition state. Herein, we report a study on Cd(2+) rescue of the deleterious phosphorothioate substitution at the cleavage site. Under all conditions, the Cd(2+) concentration dependence can be accounted for by binding of a single rescuing metal ion. The affinity of the rescuing Cd(2+) is sensitive to perturbations at the P9/G10.1 site but not at the cleavage site or other sites in the conserved core. These observations led to a model in which a metal ion bound at the P9/G10.1 site in the ground state acquires an additional interaction with the cleavage site prior to and in the transition state. A titration experiment ruled out the possibility that a second tight-binding metal ion (< 10 microM) is involved in the rescue, further supporting the single metal ion model. Additionally, weakening Cd(2+) binding at the P9/G10.1 site did not result in the biphasic binding curve predicted from other models involving two metal ions. The large stereospecific thio-effects at the P9/G10.1 and the cleavage site suggest that there are interactions with these oxygen atoms in the normal reaction that are compromised by replacement of oxygen with sulfur. The simplest interpretation of the substantial rescue by Cd(2+) is that these atoms interact with a common metal ion in the normal reaction. Furthermore, base deletions and functional group modifications have similar energetic effects on the transition state in the Cd(2+)-rescued phosphorothioate reaction and the wild-type reaction, further supporting the model that a metal ion bridges the P9/G10.1 and the cleavage site in the normal reaction (i.e., with phosphate linkages rather than phosphorothioate linkages). These results suggest that the hammerhead undergoes a substantial conformational rearrangement to attain its catalytic conformation. Such rearrangements appear to be general features of small functional RNAs, presumably reflecting their structural limitations.  相似文献   

14.
Ca2+-transporting adenosine triphosphatase (ATPase) of sarcoplasmic reticulum couples ATP hydrolysis with ion transport. Phosphorylation of the cytosolic region of the calcium-bound conformation (E1) of the protein leads to drastic conformational rearrangements of the transmembrane helices and the release of Ca2+. The resulting calcium-free conformation (E2) is less stable than the E1 form. The changes in van der Waals interactions and interhelical hydrogen bonding in the E1 and E2 conformations were compared. Conformational changes in the transmembrane region concomitant with the release of Ca2+ mainly affect the number of interhelical hydrogen bonds, which is reduced to half of that in E1 form, whereas the number of interhelical atomic pairwise contacts reflecting van der Waals interactions experience little change. The interhelical hydrogen bonds in Ca2+-transporting ATPase can be divided into two groups according to their roles: those that play a structural stabilizing role and those that are important for the correct geometry of the Ca2+ binding site. Interhelical hydrogen bonds in the transmembrane regions play important roles for the stability and specificity of helix-helix interactions in proteins where change of conformation is required for transport of ions or small molecules.  相似文献   

15.
Direct metal analysis of the bacteriolytic exoenzyme zoocin A failed to unequivocally identify a putative metal cofactor; hence, indirect experiments utilizing NMR were undertaken to settle this question. Cd(2+) as a surrogate metal ion was reconstituted into EDTA-treated, metal-free recombinant zoocin, and (113)Cd-NMR was employed to explore binding in the protein for this ion. The Cd-substituted enzyme was found to have 80-85% of native streptococcolytic activity. A major (113)Cd resonance at 113.6 ppm was observed which with time split into resonances at 113.6 and 107.2 ppm. A minor (113)Cd resonance at 87.3 ppm was observed which increased in intensity with time. These Cd chemical shifts are indicative of two N atoms and two O atoms ligating directly to the metal site.On the basis of conserved amino acid residues in a homologous protein of known structure, LytM, the ligands in zoocin are tentatively assigned to H45, D49, H133, and some combination of water or buffer ions as the fourth oxygen donor in zoocin A. Comparison of the combined intensities for (113)Cd-substituted zoocin with a known quantity of another Cd-substituted protein gave Cd binding as approximately stoichiometric (1.2 +/- 0.2) with protein. Additional metal-removal and reconstitution experiments on the recombinant catalytic domain of zoocin implicate Zn(2+) as the metal cofactor. Therefore, the evidence supports zoocin as a single Zn(2+) ion binding metalloenzyme.  相似文献   

16.
Identification of the proteoglycan binding site in apolipoprotein B48   总被引:3,自引:0,他引:3  
An initial event in atherosclerosis is the retention of lipoproteins within the intima of the vessel wall. Previously we identified Site B (residues 3359-3369) in apolipoprotein (apo) B100 as the proteoglycan binding sequence in low density lipoproteins (LDLs) and showed that the atherogenicity of apoB-containing lipoproteins is linked to their affinity for artery wall proteoglycans. However, both apoB100- and apoB48-containing lipoproteins are equally atherogenic even though Site B lies in the carboxyl-terminal half of apoB100 and is absent in apoB48. If binding to proteoglycans is a key step in atherogenesis, apoB48-containing lipoproteins must bind to proteoglycans via other proteoglycan binding sites in the amino-terminal 48% of apoB. In vitro studies have identified five clusters of basic amino acids in delipidated apoB48 that bind negatively charged glycosaminoglycans. To determine which of these sites is functional on LDL particles, we analyzed the proteoglycan binding activity of recombinant human LDLs from transgenic mice or rat hepatoma cells. Substitution of neutral amino acids for the basic amino acids in Site B-Ib (residues 84-94) abolished the proteoglycan binding activity of recombinant apoB53. Carboxyl-truncated apoB80 bound biglycan with higher affinity than apoB100 and apoB48. ApoB80 in which Site B was mutated had the same affinity for proteoglycans as apoB48. These data support the hypothesis that the carboxyl terminus of apoB100 "masks" Site B-Ib, the amino-terminal proteoglycan binding site, and that this site is exposed in carboxyl-truncated forms of apoB. The presence of a proteoglycan binding site in the amino-terminal region of apoB may explain why apoB48- and apoB100-containing lipoproteins are equally atherogenic.  相似文献   

17.
The receptor site for transferrin was investigated in normal human reticulocytes by the use of photoactive 4-fluoro-3-nitrophenyl azide which was conjugated to chromatographically pure human transferrin saturated with iron. The photoprecursor-bearing protein was further treated with fluorescein isothiocyanate. The nonactivated transferrin conjugate was fully competitive with respect to binding characteristics with normal transferrin. The aryl nitrene-containing photoactivated transferrin-reticulocyte receptor complex was isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Separated proteins and polypeptides were eluted from the gels and analyzed for fluorescence. A fluorescent band of 123,000 daltons was identified as possible transferrin-receptor complex. The molecular weight of the membrane receptor was estimated to be 43,000. This corresponds to the approximate weight of one of the major red cell glycopeptides.  相似文献   

18.
The activity of G protein-coupled receptors (GPCRs) can be modulated by a diverse spectrum of drugs ranging from full agonists to partial agonists, antagonists, and inverse agonists. The vast majority of these ligands compete with native ligands for binding to orthosteric binding sites. Allosteric ligands have also been described for a number of GPCRs. However, little is known about the mechanism by which these ligands modulate the affinity of receptors for orthosteric ligands. We have previously reported that Zn(II) acts as a positive allosteric modulator of the beta(2)-adrenergic receptor (beta(2)AR). To identify the Zn(2+) binding site responsible for the enhancement of agonist affinity in the beta(2)AR, we mutated histidines located in hydrophilic sequences bridging the seven transmembrane domains. Mutation of His-269 abolished the effect of Zn(2+) on agonist affinity. Mutations of other histidines had no effect on agonist affinity. Further mutagenesis of residues adjacent to His-269 demonstrated that Cys-265 and Glu-225 are also required to achieve the full allosteric effect of Zn(2+) on agonist binding. Our results suggest that bridging of the cytoplasmic extensions of TM5 and TM6 by Zn(2+) facilitates agonist binding. These results are in agreement with recent biophysical studies demonstrating that agonist binding leads to movement of TM6 relative to TM5.  相似文献   

19.
Wang D  Song Y  Li J  Wang C  Li F 《Biochimica et biophysica acta》2011,1808(6):1639-1644
DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.  相似文献   

20.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号