首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lymphoid cells transformed by Rauscher murine leukemia virus (R-MuLV) belonged to the B cell lineages. One group of cells exhibited Fc receptors but completely lacked immunoglobulin mu heavy and kappa light chains. The majority of the cells resemble pre-B type. They displayed mu chains but kappa chains were completely absent. Very rarely certain cells synthesized both mu and kappa chains. Based on the presence of Fc receptors and IgM synthesis the cells transformed by R-MuLV belonged to three B cell developmental stages. These cells were tested for immunoglobulin gene rearrangements using JH and CK probes. DNA from cell lines without any detectable levels of IgM mu exhibited embryonic as well as rearranged JH genes, whereas cells expressing IgM possess, in addition, productive and non-productive light chain gene rearrangements. The most terminally differentiated cell possesses JH and CK rearrangement associated with the synthesis of mu and kappa chains. Presumably the cells with rearranged JH and CK genes without immunoglobulin synthesis represent a developmental transition. We conclude that cells transformed by R-MuLV belonged to five step-wise compartments of B cell development. Our findings implicate definite sequential events of immunoglobulin gene rearrangement and expression during B cell development.  相似文献   

2.
M Reth  E Petrac  P Wiese  L Lobel    F W Alt 《The EMBO journal》1987,6(11):3299-3305
During B cell development V kappa gene rearrangement seems to occur only in mu-positive pre-B cells. To study the role of the mu chain in the activation of the Ig kappa locus, we introduced expression vectors carrying different forms of the mu gene into null pre-B cells. The activation of the Ig kappa locus followed the expression of the membrane form (micron) of the mu chain. The expression of the secreted form (microS) did not result in the activation of the Ig kappa locus. We further show that both forms of the mu chain differ in their intracellular transport in pre-B cells.  相似文献   

3.
Little is known about the role of signals transduced by cell surface IgM (sIgM) expressed during early B cell development. A subclone (1.6) of the late pre-B cell lymphoma 70Z/3.12 was used to study signal transduction by surface mu heavy (H) chain before and after transition to the early immature B cell stage, and the functional consequences thereof. Although kappa L chain expression can be induced on 1.6 cells by LPS or cytokines, immunoprecipitations indicated that the non-induced 1.6 cells expressed mu H chain with an alternative protein(s) which may be a surrogate light chain(s). Consistent with this, anti-mu but not anti-kappa or anti-lambda antibodies caused transient Ca2+ mobilization in noninduced 1.6 cells. The Ca2+ signal was derived from both intracellular stores and Ca2+ influx in either noninduced cells or in cells that had been preinduced to express kappa L chain. Thus, the ability of mu H chain to mobilize Ca2+ as a second messenger does not depend upon the expression of mature L chains. The immature B lymphomas, WEHI-231 and CH1, express mature forms of IgM and undergo growth arrest when stimulated by anti-mu antibody. In contrast, signals generated by mu H chain on either noninduced or preinduced 1.6 cells or in the sIgM+ pre-B cell transfectant 300-19 mu lambda 36/8 did not cause growth arrest. These results suggest that mu H chain expressed on pre-B cells is capable of mobilizing Ca2+, but that this signal alone is insufficient to induce growth arrest in the pre-B cell.  相似文献   

4.
Mouse pre-B cells synthesize and secrete mu heavy chains but not light chains   总被引:35,自引:0,他引:35  
D Levitt  M D Cooper 《Cell》1980,19(3):617-625
The immunoglobulins produced by the earliest recognizable B cell precursors (pre-B cells) were characterized in the mouse and human. Immunofluorescent analysis revealed no evidence of surface IgM components, and only mu heavy chains could be detected intracytoplasmically in pre-B cells. Surface IgM components could not be isolated from intact fetal liver cells that lacked sIgM+ B lymphocytes but possessed pre-B cells. Pre-B cells were shown to synthesize and secrete mu heavy chains but not light chains by immunochemical analysis. These mu chains constituted less than 0.01% of TCA precipitable protein synthesized and secreted by fetal liver cells during an 8 hr labelling period. Migration of both intracellular and secreted mu chains on SDS-PAGE suggested that they were smaller than mu chains secreted by mouse and human plasmacytomas. These data indicate that mu chain synthesis precedes light chain expression during B cell ontogeny and suggest a new role for pre-B cells in the generation and expression of a diverse immunoglobulin repertoire.  相似文献   

5.
During B cell differentiation rearrangement of immunoglobulin (Ig) genes is partially regulated by the Ig proteins. Rearrangement of heavy (H) chain genes is inhibited, whilst that of light (L) chain genes is induced by the membrane form of the mu H chain. In order to analyse additional structural requirements of mu induced L chain gene rearrangement we transfected wild-type mu and mutant mu constructs lacking functional exons encoding the first or second constant domains into Abelson murine leukemia virus (AMuLV) transformed pre-B cells. All mu chains are expressed on the surface of the pre-B cell and all associate with omega and iota, two proteins forming a surrogate light chain, necessary for mu membrane expression. Nevertheless, only wild-type mu and not the mutant mu proteins promote L gene rearrangement. A heterodimer of proteins with Mr of 33 kd and 36 kd was found associated with wild-type but not with the mutant mu proteins. Continuous presence of mu is required for L chain gene recombination since loss of mu stopped and readdition of mu started L gene rearrangement. We propose that the protein complex composed of mu and the 33 kd/36 kd protein heterodimer is responsible for the activation of the L chain gene locus and its rearrangement.  相似文献   

6.
Pre-B cell receptor (pre-BCR) signals are essential for pro-B cells to mature efficiently into pre-B cells. The pre-BCR is an Ig-like transmembrane complex that is assembled from two mu H chains (mu HC) and two surrogate L chains consisting of the non-covalently associated polypeptides VpreB and lambda5. In lambda5(-/-) mice, pro-B cell maturation is impaired, but not completely blocked, implying that a mu HC induces differentiation signals in the absence of lambda5. Using a mouse model, in which transgenic mu HC expression can be controlled by tetracycline, we show that in the absence of lambda5, the transgenic mu HC promotes in vivo differentiation of pro-B cells, induces IL-7-dependent cell growth, and is expressed on the surface of pre-B cells. Our findings not only show that an incomplete pre-BCR can initiate signals, but also challenge the paradigm that an IgHC must associate with an IgLC or a SLC to gain transport and signaling competency.  相似文献   

7.
R Sitia  M S Neuberger    C Milstein 《The EMBO journal》1987,6(13):3969-3977
IgM secreting cells express little or no membrane IgM. This is not always due to absence of the relevant mRNA. To investigate the synthesis and processing of membrane (micron) and secreted (microseconds) polypeptides in secretory B cells, myeloma cells were transfected either with a plasmid containing an intact mu gene or with one only capable of directing micron (not microseconds) mRNA synthesis. Although myeloma transfectants could make abundant levels of micron mRNA, they did not express IgM on the cell surface. In the myeloma host, micron mRNA is translated some 5-fold less efficiently than microseconds mRNA. However, this translational control does not totally preclude micron synthesis, indicating post-translational regulatory events. No difference between micron and microseconds chains could be detected in their rate of assembly with light chains or in their stability, although both types of heavy chain were degraded more rapidly when synthesized in the absence of light chain, or when the hydrophobic nature of the leader sequence was destroyed by site-directed mutagenesis. However, whereas intracellular microseconds chains in IgM-secreting plasmacytoma were found to be concentrated in the Golgi, the micron chains were mainly located in the endoplasmic reticulum. Retention in the endoplasmic reticulum is also observed for both micron and microseconds when synthesized in the absence of light chain. We propose that it is the expansion of the endoplasmic reticulum that accompanies B cell to plasma cell differentiation which is in part responsible for the down-regulation of surface IgM expression. Such a mechanism may also affect the expression of other surface proteins.  相似文献   

8.
Mouse normal bone marrow pre-B lymphocytes synthesize only membrane mu chains (micron), as shown by mRNA studies and peptide analysis. The micron chains exist in two forms: free micron chains assembled into dimers, or L chain-bound micron chains present in IgM monomers (in the case of 'late pre-B cells', i.e., after productive L chain gene rearrangement). These two forms of molecules are very different in properties, fate and intracellular pathways. Free but not L chain-bound mu chains are highly susceptible to mild proteolysis, which degrades their entire Cmu 1 and VH domains. Free mu chains are rapidly degraded within the lysosomal compartment, which they reach via the cis, avoiding the trans, part of the Golgi complex. In contrast, as soon as mu chains bind to L chains, they are directed towards the 'trans' Golgi compartment, where they undergo terminal glycosylation, then to the cell surface, where they progressively accumulate. It is suggested that the conformation instability of the Cmu 1 and VH domains of the free mu chains plays a critical role in the intracellular targeting of these molecules, as compared with that of L chain-bound mu chains.  相似文献   

9.
The majority of cell lines derived by infection of murine bone marrow cells with Abelson murine leukemia virus (A-MuLV) synthesize a mu chain but no detectable light chain. Aside from this mu-only phenotype, lines that make only light chain, both chains or no immunoglobulin-related polypeptides have also been found. Two lines have been studied in detail: one that makes only mu chain and one that makes only kappa light chain. Synthesis of both polypeptides can be increased by modifying the culture conditions so as to decrease the growth rate of the cells. Although some kappa chain secretion was observed, neither secreted nor surface mu was detected. We suggest that the mu- only phenotype may be an early normal step in the pathway of B lymphocyte maturation.  相似文献   

10.
11.
Immunofluorescence techniques were used to trace the development of cells expressing mu heavy chains in humans and mice. IgM B cells were distinguished from pre-B cells by their additional expression of kappa or lambda light chains. Generation of pre-B and progeny B cells was evident in hemopoietic fetal liver and bone marrow, but not in thymus, heart, lung, spleen, kidney, and placental tissues. Pre-B and B cells, in a ratio of 2 to 1, were abundant in sections of hemopoietic liver and in bone marrow from 12- to 15-wk-old human fetuses, whereas these cells were rare in nonhemopoietic liver samples obtained beyond the 34th week. In mouse fetal liver mu+ cells appeared first around the 12th day of gestation and increased in frequency throughout the third trimester. On day 17 of gestation, kappa light chain expression by 1% of mu+ cells was noted, and the percentage of kappa+/mu+ cells increased progressively to more than 80% by 5 days after birth. Pre-B and B cells were interspersed among myeloid and more abundant erythropoietic cellular elements in the extrasinusoidal areas adjacent to hepatic cords. A loose clustering or "starburst" distribution pattern of pre-B cells became evident around day 17. These observations suggest a model for in situ generation of pre-B and progeny B cells in the hemopoietic fetal liver. In the midst of more numerous erythropoietic elements, immunoglobulin-negative precursors divide to generate a loose colony of mu+ pre-B cells that divide again before giving rise to a wave of IgM B cells.  相似文献   

12.
Degradation of IgM mu heavy chains in light chain-negative pre-B cells is independent of vesicular transport, as is evident by its insensitivity to brefeldin A or cell permeabilization. Conversely, by the same criteria, degradation of the secretory mu heavy chain in light chain-expressing B cells depends on vesicular transport. To investigate whether the presence of conventional light chains or the developmental stage of the B-lymphocytes dictates the degradative route taken by mu, we express in 70Z/3 pre-B cells either lambda ectopically or kappa by lipopolysaccharides-stimulated differentiation into B cells and show their assembly with mu heavy chains. The resulting sensitivity of mu degradation to brefeldin A and cell permeabilization demonstrates that conventional light chains, a hallmark of B cell differentiation, are necessary and sufficient to divert mu from a vesicular transport-independent to a vesicular transport-dependent degradative route. Although both routes converge at the ubiquitin-proteasome degradation pathway, only in light chain-expressing cells is vesicular transport a prerequisite for mu ubiquitination.  相似文献   

13.
Control of IgM synthesis in the murine pre-B cell line, 70Z/3'   总被引:5,自引:0,他引:5  
The murine 70Z/3 tumor resembles a pre-B cell in synthesizing only intracellular mu-chains and no detectable light chain. However, one kappa gene is already rearranged, and after overnight incubation with lipopolysaccharide (LPS), most of the cells are induced to synthesize light chain. The induced cells display IgM on their surface, but do not secrete IgM. Thus, 70Z/3 cells resemble cells poised at the pre-B cell/B lymphocyte border. We have examined synthesis and post-translational modification of mu-chains in uninduced and induced 70Z/3 cells. Isolation of mu-chains and peptide maps demonstrated that both populations synthesize intracellular forms that correspond to membrane-specific mum and secretion-specific mus chains. These intracellular forms have completed only the first of the two glycosylation steps characteristic of eukaryotic cells. After induction by LPS, L chain synthesis commences, mum and mus synthesis are both increased twofold to threefold (due to an increased rate of synthesis rather than decreased degradation), and both complex with L chain to form mu2L2 tetramers. Furthermore, the glycosylation of a subset of the mum chains is completed, and these are placed on the membrane. However, unglycosylated mu2L2 tetramers can be placed on the membrane, so glycosylation is not a requirement. These data suggest that L chain may not be sufficient for externalization of mum and mus chains. These data support the idea that the controls of membrane placement and secretion of mu chains are post-translational and that different mechanisms operate for mum and mus chains.  相似文献   

14.
In rat bone marrow (BM), the B lineage surface antigen HIS24 is expressed by all surface mu chain-bearing (s mu+) B cells, by cytoplasmic mu chain-containing (c mu+s mu-) pre-B cells and TdT+ cells, and by lymphoid cells lacking both mu and TdT. Because TdT+ and HIS24+TdT-mu- cells may represent stages in B lymphocytopoiesis before mu chain expression, we investigated their kinetics. The metaphase arrest method was combined with immunofluorescence staining to detect proliferation and to quantitate cell production in the BM pre-B, TdT+, and HIS24+TdT-mu- compartments. Their apparent cell cycle times (tC(a)) were 38, 36, and 19 hr, and the number of cells produced per hour per femur were 58, 9, and 41 X 10(4), respectively. The HIS24+ compartments showed further phenotypic heterogeneity. Six percent of TdT+ cells expressed mu chains and were therefore pre-B cells. Twenty percent of HIS24+TdT-mu- cells expressed Ig other than mu chains, with size distribution and kinetics similar to HIS24+TdT-Ig- cells. Thus, the rate of production in the truly Ig-HIS24+ compartment was about 40 X 10(4)/hr/femur (8.5 by TdT+mu- and 33 by TdT-Ig-). In each phenotypic compartment, mitoses were confined to subsets of large (greater than 11 to 12 micron) cells with tC(a) of 13 to 15 hr. Surface mu+ B cells were essentially non-cycling. To quantitate whole body BM cell production, the recovery of marrow from bone and the distribution of BM were measured in 59Fe distribution experiments. The number of cells produced by whole body BM was estimated as follows: for pre-B cells, 4.5 X 10(8)/day; for TdT+mu-, 0.7 X 10(8)/day; and for HIS24+TdT-Ig- 2.6 X 10(8)/day. From the derived cell flux in these compartments we suggest that 1) many more pre-B cells are produced than needed by the peripheral B cell pool; 2) if TdT is an obligatory stage in B cell genesis, there must be at least two cell cycles in the pre-B cell compartment; 3) if it is not, the TdT+ stage may be bypassed, with HIS24+TdT-Ig- cells perhaps feeding directly into the pre-B cell compartment.  相似文献   

15.
16.
Using a polyclonal rabbit antiserum against recombinant mouse lambda 5 protein, we determined that the pre-B cell specific mouse lambda 5 gene encodes a 22-kDa protein. The lambda 5 protein, which is related to conventional Ig lambda L chain proteins forms a complex with Ig mu H chain protein and an as yet unidentified 16-kDa protein (p16) in mu+ pre-B cell lines carrying a functionally rearranged VH-DH-JH allele. In pre-B cell lines which carry DH-JH rearrangements and do not express mu H chain protein, lambda 5 protein is associated with p16. Thus the expression of lambda 5 protein precedes the expression of intact mu H chain protein. This suggests the existence of developmentally regulated protein complexes involving the Ig L chain-like protein lambda 5 and p16 in mu- pre-B cells; lambda 5, p16, and Ig H chain protein in mu+ pre-B cells and Ig H chain and conventional Ig L chain proteins in B cells and plasma cells.  相似文献   

17.
18.
To explore the biochemical basis for maintaining immunological tolerance by functional inactivation of self-reactive B lymphocytes, transgenic mice carrying rearranged anti-lysozyme immunoglobulin transgenes and a lysozyme transgene were used as a source of large numbers of tolerant self-reactive B cells. Antigen receptors of the IgD isotype were expressed at normal levels on tolerant B cells, contained the heterodimeric MB1/B29 signalling component of the receptor complex and were structurally indistinguishable from IgD on nontolerant B cells. In contrast, cell surface expression of IgM receptor complexes on tolerant B cells was greatly reduced, despite normal expression of mRNA encoding the receptor components. Three-fold fewer immunoreactive mu heavy chains were detectable after a short period of biosynthetic labelling and the immunoreactive mu chains produced were paired with kappa light chains and assembled normally into intact receptor complexes containing the MB1/B29 heterodimer. Nascent IgM receptor complexes nevertheless failed to be processed into an endoglycosidase H-resistant form in the tolerant B cells and thus appeared to be selectively blocked in their transport from the endoplasmic reticulum to the medial Golgi. These findings demonstrate that intracellular trafficking of antigen receptor complexes is regulated by exposure to receptor stimuli at the cell surface causing a long-lasting decrease in surface receptor expression on tolerant B cells.  相似文献   

19.
In the mouse, Bruton's tyrosine kinase (Btk) is essential for efficient developmental progression of CD43(+)CD2(-) large cycling into CD43(-)CD2(+) small resting pre-B cells in the bone marrow and of IgM(high) transitional type 2 B cells into IgM(low) mature B cells in the spleen. In this study, we show that the impaired induction of cell surface changes in Btk-deficient pre-B cells was still noticeable in kappa(+) immature B cells, but was largely corrected in lambda(+) immature B cells. As lambda gene rearrangements are programmed to follow kappa rearrangements and lambda expression is associated with receptor editing, we hypothesized that the transit time through the pre-B cell compartment or receptor editing may affect the extent of the cellular maturation defects in Btk-deficient B cells. To address this issue, we used 3-83 mu delta transgenic mice, which prematurely express a complete B cell receptor and therefore manifest accelerated B cell development. In Btk-deficient 3-83 mu delta mice, the IgM(+) B cells in the bone marrow exhibited a very immature phenotype (pre-BCR(+)CD43(+)CD2(-)) and were arrested at the transitional type 1 B cell stage upon arrival in the spleen. However, these cellular maturation defects were largely restored when Btk-deficient 3-83 mu delta B cells were on a centrally deleting background and therefore targeted for receptor editing. Providing an extended time window for developing B cells by enforced expression of the antiapoptotic gene Bcl-2 did not alter the Btk dependence of their cellular maturation. We conclude that premature B cell receptor expression amplifies the cellular maturation defects in Btk-deficient B cells, while extensive receptor editing reduces these defects.  相似文献   

20.
Peanut agglutinin (PNA) binding by mouse bone marrow cells and fractionation by the fluorescence-activated cell sorter have previously been shown to separate high concentrations of pre-B cells, as identified by cytoplasmic mu-chains (c mu). PNA+ and PNA- marrow cell fractions have now been assayed for the presence of functional pre-B cells able to generate mature B cells in culture, as defined by three criteria, the appearance of cell surface mu-chains (s mu), immunoglobulin secretion in response to bacterial lipopolysaccharides, and B cell colony formation. Small PNA+ cell fractions contained pre-B cells that developed into mature B lymphocytes in 1/2 to 1 day but did not sustain B cell production. Large PNA+ cells included pre-B cells that gave rise to mature B lymphocytes after an interval of 1 1/2 to 3 days and were able to sustain B cell genesis in vitro for at least 3 to 5 days thereafter. PNA- cell fractions contained mature B cells but lacked pre-B cell activity. The results demonstrate that PNA binding allows the separation of functional subsets of pre-B cells from bone marrow and that the three in vitro assays used in this study are closely comparable with one another as functional pre-B cell criteria. The findings suggest correlations between functional assays, c mu expression, PNA receptors, and cell size in characterizing stages of pre-B cell development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号