首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Aramori  S Nakanishi 《Neuron》1992,8(4):757-765
The signal transduction and pharmacological properties of a metabotropic glutamate receptor, mGluR1, were studied in CHO cells permanently expressing the cloned receptor. mGluR1 stimulated phosphatidylinositol (PI) hydrolysis in the potency rank order of quisqualate greater than L-glutamate greater than or equal to ibotenate greater than L-homocysteine sulfinate greater than or equal to trans-ACPD. This receptor also evoked the stimulation of cAMP formation and arachidonic acid release with comparable agonist potencies. DL-AP3 and L-AP4, the effective antagonists reported for glutamate-stimulated PI hydrolysis in brain slices, showed no appreciable effects on mGluR1, suggesting the existence of an additional subtype of this receptor family. Pertussis toxin and phorbol ester produced distinct effects on the three transduction cascades, implying that mGluR1 independently links to the multiple transduction pathways probably through different G proteins.  相似文献   

2.
Previous in vitro studies have shown that group III metabotropic glutamate receptors (mGluRs) regulate synaptic glutamate release. The present study used microdialysis to characterize this regulation in vivo in rat nucleus accumbens. Reverse dialysis of the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (L-AP4) decreased, whereas the antagonist (R,S)-alpha-methylserine-O-phosphate (MSOP) increased the extracellular level of glutamate. The decrease by L-AP4 or the increase by MSOP was antagonized by co-administration of MSOP or L-AP4, respectively. Activation of mGluR4a by (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid or mGluR6 by 2-amino-4-(3-hydroxy-5-methylisoxazol-4-yl)butyric acid had no effect on extracellular glutamate. (R,S)-4-Phosphonophenylglycine (PPG), another group III agonist with high affinity for mGluR4/6/8, reduced extracellular glutamate only at high concentrations capable of binding to mGluR7. The increase in extracellular glutamate by MSOP was tetrodotoxin-independent, and resistant to both the L-type and N-type Ca2+ channel blockers. L-AP4 failed to block 30 mm K+-induced vesicular glutamate release. Blockade of glutamate uptake by d,l-threo-beta-benzyloxyaspartate caused a Ca2+-independent elevation in extracellular glutamate that was reversed by L-AP4. Finally, (S)-4-carboxyphenylglycine, an inhibitor of cystine-glutamate antiporters, attenuated the L-AP4-induced reduction in extracellular glutamate. Together, these data indicate that group III mGluRs regulate in vivo extracellular glutamate in the nucleus accumbens by inhibiting non-vesicular glutamate release.  相似文献   

3.
Summary The inhibitory amino acid taurine has been held to function as an osmoregulator and modulator of neural activity, being particularly important in the immature brain. lonotropic glutamate receptor agonists are known markedly to potentiate taurine release. The effects of different metabotropic glutamate receptor (mGluR) agonists and antagonists on the basal and K+-stimulated release of [3H]taurine from hippocampal slices from 3-month-old (adult) and 7-day-old mice were now investigated using a superfusion system. Of group I metabotropic glutamate receptor agonists, quisqualate potentiated basal taurine release in both age groups, more markedly in the immature hippocampus. This action was not antagonized by the specific antagonists of group I but by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX), which would suggest an involvement of ionotropic glutamate receptors. (S)-3,5-dihydroxyphenylglycine (DHPG) potentiated the basal release by a receptor-mediated mechanism in the immature hippocampus. The group II agonist (2S, 2R, 3R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG IV) markedly potentiated basal taurine release at both ages. These effects were antagonized by dizocilpine, indicating again the participation of ionotropic receptors. Group III agonists slightly potentiated basal taurine release, as did several antagonists of the three metabotropic receptor groups. Potassium-stimulated (50 mM K+) taurine release was generally significantly reduced by mGluR agents, mainly by group I and II compounds. This may be harmful to neurons in hyperexcitatory states. On the other hand, the potentiation by mGluRs of basal taurine release, particularly in the immature hippocampus, together with the earlier demonstrated pronounced enhancement by activation of ionotropic glutamate receptors, may protect neurons against excitotoxicity.Abbreviations ACPD (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate - AIDA (RS)-1-aminoindan-1,5-dicarboxylate - AMPA 2-amino-3-hydroxy05-methyl-4-isoxazolepropionate - CNQX 6-cyano-7-nitroquinoxaline-2,3-dione - CPPG (RS)-2-cyclopropyl-4-phosphonophenylglycine - DCG IV (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine - DHPG (S)-3,5-dihydroxyphenylglycine - EGLU (2S)-2-ethylglutamate - L-AP3 L(+)-2-amino-3-phosphonopropionate - L-AP4 L(+)-2-amino-4-phosphonobutyrate - L-AP6 L(+)-2-amino-6-phosphonohexanoate - L-SOP O-phospho-L-serine - MPPG (RS)-2-methyl-4-phosphonophenylglycine - MSOP (RS)-2-methylserine-O-phosphate - MSOPPE (RS)-2-methylserine-O-phosphate monophenyl ester - MTPG (RS)-2-methyl-4-tetrazolylphenylglycine - NBQX 6-nitro-7-sulphamoyl[f]quinoxaline-2,3-dione - NMDA N-methyl-D-aspartate - QA quisqualate - S-3C4H-PG (S)-3-carboxy-4-hydroxyphenylglycine - S-4C-PG (S)-4-carboxyphenylglycine; - S-MCGP (S)-2-methyl-4-carboxyphenylglycine  相似文献   

4.
Effects of application of glutamate and glutamatergic ligands were studied to characterize the receptors for glutamate present on the soma membrane of the dorsal unpaired median (DUM) neurons in the thoracic ganglia of the cockroach, Periplaneta americana, using the intracellular recording technique. Application of L-glutamate did not block the GABA-response, and application of beta-guanidino-propionic acid, a competitive antagonist for GABA, failed to block the response to L-glutamate. These results indicate that most of L-glutamate action may not be mediated by a GABA-activated channel. To examine glutamate receptor types on the DUM neurons, glutamate receptor agonists were applied. The ionotropic glutamate receptor (iGluR) agonists evoked depolarizations with the following relative rank of order of potency: kainate > AMPA > quisqualate. Metabotropic glutamate receptor (mGluR) agonists also elicited membrane depolarizations or hyperpolarizations associated with an increase in membrane conductance. The mGluR agonists evoked depolarizations or hyperpolarizations with the following relative rank of order: L-CCG-1 > 1S, 3R-ACPD > L-AP4. Depolarization of the same DUM neuron was detected following exposure of kainate and L-CCG-I, suggesting the coexistence of distinct iGluR and mGluR types. A membrane permeable cAMP analog, CPT-cAMP, could not mimic the effect of mGluR agonists. The mGluR selective antagonists, MCCG and MCPG, failed to antagonize the response to mGluR agonists. The involvement of cAMP in the mGluR response was not confirmed in DUM neurons. Although the functional roles of these receptors are unknown, it might be possible then that these extrasynaptic receptors have a modulatory effect on the excitability of the DUM neurons.  相似文献   

5.
The tryptophan metabolite kynurenic acid (KYNA), which is produced enzymatically by the irreversible transamination of l-kynurenine, is an antagonist of alpha7 nicotinic and NMDA receptors and may thus modulate cholinergic and glutamatergic neurotransmission. Two kynurenine aminotransferases (KAT I and II) are currently considered the major biosynthetic enzymes of KYNA in the brain. In this study, we report the existence of a third enzyme displaying KAT activity in the mammalian brain. The novel KAT had a pH optimum of 8.0 and a low capacity to transaminate glutamine or alpha-aminoadipate (the classic substrates of KAT I and KAT II, respectively). The enzyme was inhibited by aspartate, glutamate, and quisqualate but was insensitive to blockade by glutamine or anti-KAT II antibodies. After purification to homogeneity, the protein was sequenced and the enzyme was identified as mitochondrial aspartate aminotransferase (mitAAT). Finally, the relative contributions of KAT I, KAT II, and mitAAT to total KAT activity were determined in mouse, rat, and human brain at physiological pH using anti-mitAAT antibodies. KAT II was most abundant in rat and human brain, while mitAAT played the major role in mouse brain. It remains to be seen if mitAAT participates in cerebral KYNA synthesis under physiological and/or pathological conditions in vivo.  相似文献   

6.
Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover, guanine nucleotides GTP, GDP or GMP, inhibited the glutamate-induced cAMP accumulation. By measuring LDH activity in the buffer surrounding the slices, we showed that the integrity of the slices was maintained, indicating that the effect of guanine nucleotides was extracellular. GMP, GDP-S or Gpp(NH)p abolished quisqualate-induced cAMP accumulation. GDP-S or Gpp(NH)p but not GMP inhibited 1S,3R-ACPD-induced cAMP accumulation. The response evoked by glutamate was also abolished by the mGluR antagonists: L-AP3 abolished glutamate-induced cAMP accumulation in a dose-dependent manner and MCPG was effective only at the 2 mM dose. DNQX was ineffective. We are reporting here, an inhibition induced by guanine nucleotides, via an extracellular site (s), similar to the observed with classical glutamate antagonists on a cellular response evoked by mGluR agonists.  相似文献   

7.
Abstract: The in vivo anticonvulsant effects and in vitro metabo-tropic glutamate receptor selectivity of ( S )-4-carboxy-3-hydroxy-phenylglycine [(S)-4C3HPG] were examined. Intracerebroventricular injection of (S)-4C3HPG dose-dependently antagonized audiogenic-induced clonic and tonic convulsions in DBA/2 mice with ED60 values of 76 and 110-nmol per mouse, respectively. (S)-4C3HPG dose-dependently inhibited the spontaneously evoked epileptic spikes in a cingulate cortex-corpus callosum slice preparation. (SJ-4C3HPG displaced the binding of [3H]glutamate in membranes prepared from baby hamster kidney (BHK) cells expressing the metabotropic glutamate receptor mGluR1a with an EC50 of 5 β 1 u M. ( S )-4C3HPG dose-dependently antagonized glutamate-stimulated phosphoinositide hydrolysis in BHK cells expressing mGluR 1a with an IC50 of 15 β 3 μ M. ( S )-4C3HPG was, however, an agonist at mGluR2 with an EC60 of 21 β 4 μ M for inhibition of forskolin-stimulated cyclic AMP formation in BHK cells expressing the mGluR2. ( S )-4C3HPG had no effects at mGluR4a. These data suggest that the anticonvulsant action of ( S )-4C3HPG is mediated by combined antagonism of mGluRIa and agonism of mGluR2. These results suggest the importance of mGluR1a and/or mGluR2 in the control of epileptic activity.  相似文献   

8.
Metabotropic glutamate receptors (mGluRs) from group III reduce glutamate release. Because these receptors reduce cAMP levels, we explored whether this signaling pathway contributes to release inhibition caused by mGluRs with low affinity for L-2-amino-4-phosphonobutyrate (L-AP4). In biochemical experiments with the population of cerebrocortical nerve terminals we find that L-AP4 (1 mm) inhibited the Ca(2+)-dependent-evoked release of glutamate by 25%. This inhibitory effect was largely prevented by the pertussis toxin but was insensitive to inhibitors of protein kinase C bisindolylmaleimide and protein kinase A H-89. Furthermore, this inhibition was associated with reduction in N-type Ca(2+) channel activity in the absence of any detectable change in cAMP levels. In the presence of forskolin, however, L-AP4 decreased the levels of cAMP. The activation of this additional signaling pathway was very efficient in counteracting the facilitation of glutamate release induced either by forskolin or the beta-adrenergic receptor agonist isoproterenol. Imaging experiments to measure Ca(2+) dynamics in single nerve terminals showed that L-AP4 strongly reduced the Ca(2+) response in 28% of the nerve terminals. Moreover, immunochemical experiments showed that 25-35% of the nerve terminals that were immunopositive to synaptophysin were also immunoreactive to the low affinity L-AP4-sensitive mGluR7. Then, mGluR7 mediates the inhibition of glutamate release caused by 1 mm L-AP4, primarily by a strong inhibition of Ca(2+) channels, although high cAMP uncovers the receptor ability to decrease cAMP.  相似文献   

9.
2-Oxoacids Regulate Kynurenic Acid Production in the Rat Brain   总被引:4,自引:2,他引:2  
Abstract : This study was designed to examine the role of 2-oxoacids in the enzymatic transamination of L-kynurenine to the excitatory amino acid receptor antagonist, kynurenate, in the rat brain. In brain tissue slices incubated in Krebs-Ringer buffer with a physiological concentration of L-kynurenine, pyruvate, and several other straight- and branched-chain 2-oxoacids, substantially restored basal kynurenate production in a dose-dependent manner without increasing the intracellular concentration of L-kynurenine. All 2-oxoacids tested also reversed or attenuated the hypoglycemia-induced decrease in kynurenate synthesis, but only pyruvate and oxaloacetate also substantially restored intracellular L-kynurenine accumulation. Thus, 2-oxoacids increase kynurenate formation in the brain primarily by functioning as co-substrates of the transamination reaction. This was supported further by the fact that the nonspecific kynurenine aminotransferase inhibitors (aminooxy)acetic acid and dichlorovinylcysteine prevented the effect of pyruvate on kynurenate production in a dose-dependent manner. Moreover, all 2-oxoacids tested attenuated or prevented the effects of veratridine, quisqualate, or L-α-aminoadipate, which reduce the transamination of L-kynurenine to kynurenate. Finally, dose-dependent increases in extracellular kynurenate levels in response to an intracerebral perfusion with pyruvate or α-ketoisocaproate were demonstrated by in vivo microdialysis. Taken together, these data show that 2-oxoacids can directly augment the de novo production of kynurenate in several areas of the rat brain. 2-Oxoacids may therefore provide a novel pharmacological approach for the manipulation of excitatory amino acid receptor function and dysfunction.  相似文献   

10.
Intracellular free [Ca2+]i was measured using fura-2 in synaptosomes prepared from cerebral cortices of adult male rats (12 weeks). L-(+)-Glutamate, D-(-)-glutamate, and quisqualate produced similar dose-dependent increases in [Ca2+]i, with EC50 values of 0.38 microM, 0.74 microM, and 0.1 microM, respectively, and maximum increases of approximately 40%. Ibotenate showed less affinity (EC50 4.4 microM) but had a greater maximum effect (57%). N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) did not increase [Ca2+]i. The increases in [Ca2+]i induced by quisqualate and ibotenate were not diminished in the absence of extrasynaptosomal Ca2+. L-2-Amino-4-phosphonobutyrate (L-AP4) (1 microM) completely blocked the changes in [Ca2+]i induced by L-(+)-glutamate, D-(-)-glutamate, quisqualate, or ibotenate. The effects of quisqualate and ibotenate on [Ca2+]i were also blocked by coincubation of synaptosomes with L-(+)-serine-O-phosphate (L-SP) (1 mM) (which, like L-AP4, blocks the effects of quisqualate and ibotenate on inositol phospholipid metabolism). 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) had no effect on agonist-mediated increases in [Ca2+]i when coincubated with either quisqualate or ibotenate. These data are consistent with the existence of presynaptic glutamate receptors (of the excitatory amino acid metabotropic type) which activate phospholipase C leading to the elevation of inositol 1,4,5-trisphosphate and release of Ca2+ from intracellular stores.  相似文献   

11.
Activation of glutamate metabotropic receptors (mGluRs) in nodose ganglia neurons has previously been shown to inhibit voltage-gated Ca++ currents and synaptic vesicle exocytosis. The present study describes the effects of mGluRs on depolarization-induced phosphorylation of the synaptic-vesicle-associated protein synapsin I. Depolarization of cultured nodose ganglia neurons with 60 mm KCl resulted in an increase in synapsin I phosphorylation. Application of mGluR agonists 1-aminocyclopentane-1s-3r-dicarboxylic acid (t-ACPD) and L(+)-2-Amino-4-phosphonobutyric acid (L-AP4) either in combination or independently inhibited the depolarization induced phosphorylation of synapsin I. Application of the mGluR antagonist (RS)-α-Methyl-4-carboxyphenylglycine (MCPG) blocked t-ACPD-induced inhibition of synapsin phosphorylation but not the effects of L-AP4. In addition, application of either t-ACPD or L-AP4 in the absence of KCl induced depolarization had no effect on resting synapsin I phosphorylation. RT-PCR analysis of mGluR subtypes in these nodose ganglia neurons revealed that these cells only express group III mGluR subtypes 7 and 8. These results suggest that activation of mGluRs modulates depolarization-induced synapsin I phosphorylation via activation of mGluR7 and/or mGluR8 and that this process may be involved in mGluR inhibition of synaptic vesicle exocytosis in visceral sensory neurons of the nodose ganglia. Received 28 June 2000/Revised: 11 September 2000  相似文献   

12.
Glutamate and adenosine both modulate adenylyl cyclase activity through interaction of their specific receptors with stimulatory or inhibitory G-proteins. Guanine nucleotides (GN), which modulate G-protein activity intracellularly, are also involved in the inhibition of glutamate responses, acting from the outside of the cells. We had previously reported that glutamate inhibits adenosine-induced cyclic AMP (cAMP) accumulation in slices obtained from the optic tectum of chicks. In the present study we investigated the interaction of GN with these two neurotransmitters and found that GN inhibit the inhibitory effect of glutamate on adenosine-induced cAMP accumulation and potentiate adenosine-induced cAMP accumulation. These effects were observed with 5'-guanylylimidodiphosphate (GppNHp) or GMP, but not with guanosine (the nucleoside). Besides, these interactions of GN occur via a metabotropic glutamate receptor (mGluR) sensitive to (1 S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 S,3R-ACPD) but not to L-2-amino-4-phosphonobutyrate (L-AP4). These effects were partially modulated by a mGluR antagonist, (RS)-alpha-methyl-4-carboxyphenylglycine ((RS)M-CPG), and by an adenosine receptor antagonist, 8-phenyltheophylline. GN only potentiated the adenosine response when adenosine was acting through its receptor positively linked to adenylyl cyclase. Therefore, the data show that guanine nucleotides not only inhibit glutamate-induced responses, but also stimulate adenosine-induced responses, a fact that may contribute to the understanding of the physiological functions of guanine nucleotides.  相似文献   

13.
Abstract: Metabotropic glutamate receptor (type 1; mGluR1 ) is expressed predominantly in the hippocampus and the cerebellum. Using cultured cerebellar granule cells, we investigated the regulation of the mGluR1 mRNA expression. Levels of mGluR1 mRNA were decreased to less than half by high potassium stimulation and by glutamate and quisqualate. Although these glutamate receptor agonists tested are also known to cause neuronal cell death in culture, the effect of cell death cannot explain the observed reduction in mGluR1 mRNA because of the following reasons: (a) antagonists of N -methyl-D-aspartate and non- N -methyl-D-aspartate receptors inhibited cell death, but not the reduction of the level of mGluR1 mRNA; (b) mGluR1 mRNA returned to its initial level 48 h after the agonist application; and (c) the mRNA level of one of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors (GluR1) was not altered by these conditions. Therefore, we conclude that the glutamate or quisqualate stimulation can specifically inhibit the expression of mGluR1 mRNA. The dose response of quisqualate for the reduction in mGluR1 mRNA is consistent with that for inositol phosphate formation stimulated through the cloned mGluR1 . The mRNA reduction did not require extracellular calcium. Desensitization of mGluR1 with phorbol ester abolished the mRNA reduction. These results suggest that the reduction in mGluR1 mRNA is mediated by the activation of the metabotropic receptor itself.  相似文献   

14.
Summary. It has been shown that the primary striatal dopaminergic hypofunction which is at the origin of Parkinson's disease, results in a secondary hyperactivity of glutamatergic neurotransmission. In the search for a therapy of Parkinson's disease, ionotropic, mainly NMDA, receptor antagonists were found to have moderately beneficial, yet also some undesirable side-effects. Therefore the present study was aimed at determining whether some metabotropic glutamate receptor (mGluR) ligands may have antiparkinsonian effects in the haloperidol-induced muscle rigidity. To this end three mGluR ligands were used: the potent and selective mGluR I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA), the mixed group II agonist/group I antagonist (S)-4-carboxy-3-hydroxyphenyl-glycine ((S)-4-C3HPG), and the potent group II agonist (+)-2-aminobicyclo[3.1.0.]hexane-2,6,-dicarboxylic acid (LY354740). Only LY354740 penetrated the brain from the periphery; for this reason other drugs were injected bilaterally into the rostral striatum or nucleus accumbens. The muscle tone was recorded by a mechanomyographic/electromyographic (MMG/EMG) method which measured the resistance of a rat's hind foot and the EMG reflex response of its muscles to passive movements. (S)-4C3HPG (5 and 15 μg/0.5 μl) and LY354740 (5 and 10 mg/kg i.p.) diminished the muscle rigidity induced by haloperidol (1 mg/kg i.p.). AIDA (0.5–15 μg/0.5 μl) injected into the striatum was only slightly effective in the highest dose used. However, when injected into the nucleus accumbens AIDA (15 μg/0.5 μl) significantly and strongly counteracted the haloperidol-induced muscle rigidity. Our results suggest that stimulation of group II striatal mGluRs seems to play a major role in diminution of parkinsonian-like muscle rigidity. However, it seems that the antagonism of group I mGluRs located in the nucleus accumbens may also be of importance to the antiparkinsonian effect. Received August 31, 1999 Accepted September 3, 1999  相似文献   

15.
In the CNS, fine processes of astrocytes often wrap around dendrites, axons and synapses, which provides an interface where neurons and astrocytes might interact. We have reported previously that selective Ca(2+) elevation in astrocytes, by photolysis of caged Ca(2+) by o-nitrophenyl-EGTA (NP-EGTA), causes a kainite receptor-dependent increase in the frequency of spontaneous inhibitory post-synaptic potentials (sIPSCs) in neighboring interneurons in hippocampal slices. However, tetrodotoxin (TTX), which blocks action potentials, reduces the frequency of miniature IPSCs (mIPSCs) in interneurons during Ca(2+) uncaging by an unknown presynaptic mechanism. In this study we investigate the mechanism underlying the presynaptic inhibition. We show that Ca(2+) uncaging in astrocytes is accompanied by a decrease in the amplitude of evoked IPSCs (eIPSCs) in neighboring interneurons. The decreases in eIPSC amplitude and mIPSC frequency are prevented by CPPG, a group II/III metabotropic glutamate receptor (mGluR) antagonist, but not by the AMPA/kainate and NMDA receptor antagonists CNQX/CPP. Application of either the group II mGluR agonist DCG IV or the group III mGluR agonist L-AP4 decreased the amplitude of eIPSCs by a presynaptic mechanism, and both effects are blocked by CPPG. Thus, activation of mGluRs mediates the effects of Ca(2+) uncaging on mIPSCs and eIPSCs. Our results indicate that Ca(2+)-dependent release of glutamate from astrocytes can activate distinct classes of glutamate receptors and differentially modulate inhibitory synaptic transmission in hippocampal interneurons.  相似文献   

16.
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled glutamate receptors that subserve a number of diverse functions in the central nervous system. The large extracellular amino-terminal domains (ATDs) of mGluRs are homologous to the periplasmic binding proteins in bacteria. In this study, a region in the ATD of the mGluR4 subtype of mGluR postulated to contain the ligand-binding pocket was explored by site-directed mutagenesis using a molecular model of the tertiary structure of the ATD as a guiding tool. Although the conversion of Arg(78), Ser(159), or Thr(182) to Ala did not affect the level of protein expression or cell-surface expression, all three mutations severely impaired the ability of the receptor to bind the agonist L-[(3)H]amino-4-phosphonobutyric acid. Mutation of other residues within or in close proximity to the proposed binding pocket produced either no effect (Ser(157) and Ser(160)) or a relatively modest effect (Ser(181)) on ligand affinity compared with the Arg(78), Ser(159), and Thr(182) mutations. Based on these experimental findings, together with information obtained from the model in which the glutamate analog L-serine O-phosphate (L-SOP) was "docked" into the binding pocket, we suggest that the hydroxyl groups on the side chains of Ser(159) and Thr(182) of mGluR4 form hydrogen bonds with the alpha-carboxyl and alpha-amino groups on L-SOP, respectively, whereas Arg(78) forms an electrostatic interaction with the acidic side chains of L-SOP or glutamate. The conservation of Arg(78), Ser(159), and Thr(182) in all members of the mGluR family indicates that these amino acids may be fundamental recognition motifs for the binding of agonists to this class of receptors.  相似文献   

17.
Brain-Specific Modulation of Kynurenic Acid Synthesis in the Rat   总被引:4,自引:1,他引:3  
Abstract: This study was designed to investigate modulatory mechanisms that control the synthesis of the neuroprotective endogenous excitatory amino acid receptor antagonist kynurenate. De novo kynurenate formation was examined in vitro using tissue slices from rat brain, liver, and kidney. In slices from adult cerebral cortex, veratridine, quisqualate, and l -α-aminoadipate decreased kynurenate synthesis substantially. Glucose removal or changes in the ionic milieu, too, influenced kynurenate formation significantly, suggesting that demands on cellular energy interfere with kynurenate production in the adult rat brain. The effects of quisqualate and l -α-aminoadipate were also observed in the immature brain, in the quinolinate-lesioned adult striatum, and, to a lesser extent, in peripheral organs. In contrast, the effect of veratridine was not seen in the lesioned brain or in kidney and liver tissue, indicating its dependency on intact neuron-glia interactions. Compared with the normal adult brain, ionic manipulations yielded qualitatively distinct results in the developing brain and in the periphery, but their effects remained unchanged in the lesioned striatum. Glucose deprivation was less consequential in the immature than in the adult brain and was entirely ineffective in the lesioned striatum and in the periphery. These results further link cellular, especially astrocytic, energy metabolism to kynurenate formation in the brain. More generally, the existence of brain-specific mechanisms for the regulation of kynurenate production is suggestive of a modulatory role of this metabolite in excitatory amino acid receptor function and dysfunction.  相似文献   

18.
Abstract : The binding of L-2-[3H]amino-4-phosphonobutyrate ([3H]L-AP4) was examined in brain sections of wild-type mice and mice lacking the mGluR4 subtype of metabotropic glutamate receptors (mGluRs). Very high relative densities of [3H]L-AP4 binding were observed in the molecular layer of the cerebellar cortex, the nucleus basalis, the outer layer of the superior colliculus, and the substantia nigra. In mGluR4 knock-out mice, very low levels of binding were observed in these regions. The moderate levels of binding observed with wild-type mice in the molecular layer of the hippocampal dentate gyrus and in the thalamus were absent in mGluR4 knock-out mice. In contrast, the moderate levels observed in most of the cerebral cortex, caudate putamen, and globus pallidus were not different in mGluR4 knock-out mice compared with wild-type. In these regions, mGluR8 is likely to be labeled by [3H]L-AP4 because mGluR8 is expressed in such brain regions and, like mGluR4, has high affinity for L-AP4. We conclude that mGluR4 contributes substantially to the high-affinity binding site for [3H]L-AP4 in several regions of mouse brain, including cerebellar cortex, nucleus basalis, thalamus, superior colliculus, substantia nigra, and hippocampal dentate gyrus.  相似文献   

19.
1. The effects of three metabotropic glutamate receptor (mGluR) agonists were tested in two pathways of rat piriform cortex. The group I, II and III mGluR agonists used were RS-3,5-dihydroxyphenenylglycine (DHPG) (10–100 μM), (2S,1′S,2′S)-2-Carboxycyclopropyl (L-CCG) (20–100 μM) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) (5–500 μM), respectively.2. The effects of the three groups of agonists on synaptic transmission in the two piriform cortex pathways also were examined. All three agonists reduced the amplitude of the monosynaptic EPSPs generated by stimulation of the lateral olfactory tract (LOT) or of the association fiber pathway (ASSN). This was always accompanied by an increase in paired pulse facilitation.3. Group I and II mGluR agonists had similar synaptic effects on the two pathways, while the group III mGluR agonist suppressed the LOT pathway more than the association pathway.4. The group II and III mGluR agonists had no effect on passive membrane properties of pyramidal neurons. Group I agonists depolarized the pyramidal neuron membrane potential, and enhanced both membrane resistance and noise.5. Our data suggest that all three types of mGluRs modulate synaptic transmission in both of these pathways in piriform cortex. Only group I agonists alter post-synaptic membrane properties, while all three types of receptor regulate synaptic transmission. Groups I and II are equally potent in the LOT and association fiber pathways, while group III receptors are more potent in the LOT than the association fiber pathways.  相似文献   

20.
Abstract: Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino acids and purines was amplified when slices were exposed to 8-cyclopentyl-1,3-dipropylxanthine (a selective A1 adenosine receptor antagonist), (+)-α-methyl-4-carboxyphenylglycine [a mixed antagonist of metabotropic glutamate receptors (mGluRs)], or (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (a selective antagonist of class II mGluRs). In contrast, 2-chloro-N6-cyclopentyladenosine (CCPA; a selective A1 receptor agonist) or (2S,1R,2R,3R)-(2,3-dicarboxycyclopropyl)glycine (DCG-IV; a selective agonist of class II mGluRs) reduced the evoked release of excitatory amino acids and purines. CCPA and DCG-IV also reduced the increase in cyclic AMP formation induced by either forskolin or electrical stimulation in hippocampal slices. The inhibitory effect of CCPA and DCG-IV on release or cyclic AMP formation was less than additive. We conclude that the evoked release of excitatory amino acids and purines is under an inhibitory control by A1 receptors and class II mGluRs, i.e., mGluR2 or 3, which appear to operate through a common transduction pathway. In addition, although these receptors are activated by endogenous adenosine and glutamate, they can still respond to pharmacological agonists. This provides a rationale for the use of A1 or class II mGluR agonists as neuroprotective agents in experimental models of excitotoxic neuronal degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号