首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gollany  H.T.  Bloom  P.R.  Schumacher  T.E. 《Plant and Soil》1997,188(1):59-64
Progress in determining nutrient availability in the rhizosphere is restricted by a lack of reliable and convenient methods for rhizosphere soil-water collection. A modified centrifugation method with a fluorocarbon (Fluorinert,FC-70) as an immiscible displacement liquid was developed. Our objectives were to: i) obtain an adequate soil-water volume from a small rhizosphere sample within a reasonable time; ii) collect rhizosphere soil-water at container capacity ( 90% of field capacity) to determine soluble soil ions; and iii) evaluate FC-70 as an extractant. The soil used was a Beadle clay loam (fine, montmorillonitic mesic Typic Argiustoll) with low and high levels of CaCO3 (5 and 204g kg-1). Soil samples from the rhizosphere of 30-days-old sordan (sorghum (Sorghum bicolor L.), sudangrass (Sorghum sudanese L.) hybrid seedlings were thin-sectioned at 1-, 2- and 3-mm from the root surface. The extraction parameters (sample size, volume of extractant, relative centrifugal force and centrifugation time) were varied to determine optimal values. We obtained adequate amounts of aqueous solutions from moist soil ( 6 g) when mixed with 2 mL of FC-70, packed into a filter unit, and centrifuged for 1 hour at 14,500 × g. The displaced soil-water was analyzed by inductively coupled plasma spectrometry. The modified centrifugation technique with FC-70 offers a reliable, rapid, safe, and contamination-free method for obtaining unaltered soil-water from the rhizosphere, at a moisture content normally found in soil.  相似文献   

2.
The form in which a micronutrient is found in the rhizosphere affects its availability to plants. We compared the availability to barley of the free hydrated cation form of Fe3+, Cu2+, Zn2+, and Mn2+ versus their total metal concentrations (free ion plus complexes) in chelator-buffered solutions. Free metal ion activities were estimated using the chemical equilibrium program GEOCHEM-PC with the corrected database. In experiment 1, barley was grown in nutrient solutions with different Fe3+ activities using chelators to control Fe levels. Chlorosis occurred at Fe3+ activities of 10–18 and 10–19 M for barley grown in HEDTA and EDTA solutions, respectively. In experiment 2, barley was grown in nutrient solutions with the same calculated Fe3+ activity and the same chelator, but different total Fe concentrations. Leaf, root and shoot Fe concentrations were higher from CDTA buffered solutions which had the higher total Fe concentration indicating the importance of the total Fe concentration on Fe uptake. Results from treatments using EDTA or HEDTA, with one exception, were similar to the results from the CDTA treatment. This suggests differences in critical Fe3+ activities found in experiment 1 were due to differences in the total Fe concentration and not errors in chelate formation constants used to estimate the critical activities. Results for Cu, Zn, and Mn were similar to Fe; despite solutions with equal free Cu2+, Zn2+ and Mn2+ activities, plant concentrations of these metals were generally greater when grown in the solutions with the greater total amount of Cu, Zn, or Mn. When the free Zn2+ activity was kept constant while the total amount of Zn was increased from 4.4 to 49 M, leaf Zn concentration increased from 77 to 146 g g-1. In order to predict metal availability to barley and other species in chelator-buffered nutrient solutions, both free and total metal concentrations in solution must be considered. The critical Fe3+ activities required by barley in this study are much higher than those from tomato and soybean, 10-28 M, which strongly supports the Strategy 2 model of Fe uptake for Poaceae. This is related to the importance of the Fe3+ (barley) and the Fe2+ (tomato and soybean) ions in Fe uptake. Fe-stressed barley is known to release phytosiderophores which compete for Fe3+ in the nutrient solution, while tomato and soybean reduce Fe3+ to Fe2+ at the epidermal cell membranes to allow uptake of Fe2+ from Fe3+ chelates in solution.Abbreviations CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetracetic acid - DTPA diethylenetriaminepentacetic acid - EDTA ethylenediaminetetracetic acid - EDDHA ethylenediamine-di(o-hydroxyphenylacetic acid) - HBED-N,N di(2-hydroxybenzoyl)-ethylenediamine-N,N-diacetic acid - HEDTA-N hydroxyethylenediaminetriacetic acid - MES-2 (N-morpholino)ethanesulfonic acid - NTA nitrilotriacetic acid  相似文献   

3.

Aims

Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K+ and NH4 +, both high-demand nutrients.

Methods

A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K+ and NH4 +.

Results

Competitive cation exchange enabled low-demand cations that accumulate against roots (Ca2+, Mg2+, Na+) to desorb NH4 + and K+ from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH4 + and K+ aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations.

Conclusions

Diel plant water use and competitive cation exchange enhanced NH4 + and K+ availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.
  相似文献   

4.
French bean seedlings grown on choline, ammoniacal and nitrate forms of nitrogen together with equivalent basal application of P as KH2PO4 were tested for nutrient uptake from the rhizosphere. Statistical tests on soil (rhizosphere and non-rhizosphere) and plant (root and shoot) revealed that with the exception of P, levels of all other estimated macro-(Na+, K+, Ca2+, Mg2+) and micro-nutrients (Fe2+, Mn2+, Zn2+) were significantly changed after 42 days growth as compared to 21 days growth period. The higher uptake into shoots of Na+, K+, Fe2+, Mn2+, Zn2+ and H2PO4 and higher biomass accumulation in the rhizosphere were associated with lower rhizosphere pH. The uptake of Ca2+ and Mg2+ increased with higher rhizosphere pH. While ammoniacal and choline forms decreased rhizosphere pH and increased the P uptake, nitrate form reversed the trend showing significant inverse relationship between shoot phosphate and rhizosphere pH. Calcium and iron were associated with an inhibition of the translocation of P from root to shoot. However, no causal relationships could be established. Both shoot weight and shoot P content were closely associated with a number of rhizosphere soil parameters. The paper forms a part of the Ph. D thesis submitted by the first author to the University of Wales, 1977.  相似文献   

5.
Little information is known on what the magnitude of nitrogen (N) processed by ectomycorrhizal (ECM) fungal species in the field. In a common garden experiment performed in a northern California oak woodland, we investigated transfer of nitrogen applied as 15NH4 or 15NO3 from leaves to ectomycorrhizal roots of three oak species, Quercus agrifolia, Q. douglasii, and Q. garryana. Oak seedlings formed five common ectomycorrhizal morphotypes on root tips. Mycorrhizal tips were more enriched in 15N than fine roots. N transfer was greater to the less common morphotypes than to the more common types. 15N transfer from leaves to roots was greater when , not , was supplied. 15N transfer to roots was greater in seedlings of Q. agrifolia than in Q. douglasii and Q. garryana. Differential N transfer to ectomycorrhizal root tips suggests that ectomycorrhizal morphotypes can influence flows of N from leaves to roots and that mycorrhizal diversity may influence the total N requirement of plants.  相似文献   

6.
岳小红  曹靖  耿杰  李瑾  张宗菊  张琳捷 《生态学报》2018,38(20):7373-7380
盐分胁迫不仅影响植物的生长,而且会影响植物根际微域环境。根际pH的改变对土壤养分的有效性和微生物群落组成的变化有重要影响。为了探究啤酒大麦幼苗对不同类型盐分胁迫的生理生态响应机制和根际pH变化影响的生理机制,采用水培法,通过不同类型盐分(对照、混合Na盐、混合Cl盐和NaCl)胁迫处理啤酒大麦幼苗,对其生长、离子平衡和根际pH变化进行了研究。结果表明,1)在3种不同类型盐分胁迫下,啤酒大麦幼苗地上部干重、含水量均有所降低,而根冠比增加,尤其在NaCl胁迫下啤酒大麦幼苗地上部干重较对照显著降低了17.88%,而根干重和根冠比则分别增加了19.12%和43.86%。不同类型盐分胁迫抑制了啤酒大麦幼苗根长的生长,尤其在混合Na盐胁迫下根长降低明显(P0.05),但促进了根表面积和根体积的增加,尤其在混合Cl盐胁迫下,根表面积和根体积分别增加了41.76%和84.38%。2)不同类型盐分胁迫下啤酒大麦幼苗地上部离子平衡发生改变,在混合Na盐和NaCl胁迫下啤酒大麦幼苗主要吸收Na~+,地上部K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+显著降低;混合Cl盐和NaCl胁迫下则过量吸收Cl~-,抑制了H_2PO_4~-、NO_3~-和SO_4~(2-)的吸收。3)在混合Na盐、混合Cl盐和NaCl盐分胁迫下,啤酒大麦幼苗对阴离子的吸收总量高于对阳离子的吸收总量,离子平衡计算结果表明根际呈碱化现象,与原位显色结果一致,且在混合Cl盐胁迫下根际碱化程度最大。  相似文献   

7.
余明  蔡金桓  薛立 《生态学报》2019,39(20):7641-7648
全球氮沉降对森林生态系统结构和功能的影响已成为现代生态学研究热点之一,我国华南地区氮沉降的增长引起了土壤酸化和磷限制加剧等一系列生态问题。密度制约着植物个体对环境资源的吸收利用,是自然界中十分重要的选择压力之一。因此研究樟树(Cinnamomum camphora)幼苗的细根形态对氮磷添加和密度的响应,有利于了解亚热带树木根系对氮沉降和磷添加与林分密度的响应过程和机制,并为全球变化背景下樟树林生态系统的管理提供依据。本研究以1年生樟树幼苗为试验材料,选择氯化铵(NH_4Cl)作为氮肥以模拟大气氮沉降,并且以二水合磷酸二氢钠(NaH_2PO_4·2H_2O)模拟磷添加,氮磷处理设置4个水平,即对照、施N、施P和施N+P;种植密度设置10、20、40和80株/m~2 4个水平。测定各处理樟树幼苗细根的根长、表面积、体积和根尖数,分析氮磷添加、密度和两者交互作用对樟树幼苗细根的影响。研究结果表明,与对照处理相比,N、P和N+P处理促进了幼苗细根长度、表面积、体积以及根尖数的增加。低密度条件下的N添加对幼苗根系形态的促进效果强于P添加。N+P处理对10、20、40株/m~2幼苗根系形态的促进效果最佳,而各处理对80株/m~2幼苗根系形态的促进效果均无显著性差异。随着种植密度的增大,幼苗细根长度、表面积、体积和根尖数均减少。樟树幼苗的细根长度、表面积、体积和根尖数在各密度间和不同氮磷添加处理间均有显著性差异,密度和氮磷处理间的交互作用对根系形态各指标均无显著影响。  相似文献   

8.
This study was conducted to determine if plants can assimilate indole-3-acetic acid (IAA) from rooting media and if exogenous L-tryptophan (L-TRP) can be assimilated and converted by plants into auxins. The addition of 2-14C-IAA (3.7 kBq plant-1) to wheat (Triticum aestivum L.) seedlings of three varieties grown in nutrient solution resulted in the uptake (avg.=7.6%) of labelled IAA. Most of the label IAA was recovered in the shoot (avg.=7.2%) with little accumulation in the root (avg.=0.43%). A portion of the assimilated IAA-label in the plant was identified by co-chromatography and UV spectral confirmation as IAA-glycine and IAA-aspartic acid conjugates. Little of the assimilated IAA label was found as free IAA in the wheat plants. These same assimilation patterns were observed when 2-14C-IAA was added to wheat plants grown in sterile and nonsterile soil. In contrast, the wheat varieties assimilated considerably less (avg.=1.3%) of the added microbial IAA precursor, 3-14C-L-TRP (3.7 kBq plant-1) and thus much lower amounts of IAA conjugates were detected. Glasshouse soil experiments revealed that 2 out of 3 wheat varieties had increased growth rates and increased yields when L-TRP (10-5 and 10-7 M) was added to the root zone. It is surmised that this positive response is a result of microbial auxin production within the rhizosphere upon the addition of the precursor, L-TRP. The amino acid composition of the root exudates plays a critical role in microbial production of auxins in the rhizosphere. This study showed that wheat roots can assimilate IAA from their rooting media, which will supplement the endogenous IAA levels in the shoot tissue and may positively influence plant growth and subsequent yield.  相似文献   

9.
The re-sorption of carbon compounds from the rhizosphere was investigated using 14C-labelled glucose, mannose and citric acid. Uptake in roots of 5-day-old, intact Zea mays plants in sterile solution culture was determined over a period of 48 hours. Under optimal growth conditions significant re-absorption of glucose and mannose occurred with the uptake rates being 70.5 and 40.2 g compound g-1 root DW h-1, respectively. For glucose and mannose approximately 25% of the 14C label taken up by the root was recovered inside the plant as low-MW compounds and 33% polymerized into high MW compounds. 42% was respired as 14C-CO2. Citric acid by comparison showed little accumulation within plant tissues (11.4%) with most being respired and recovered as 14C-CO2 in KOH traps (88%). The uptake rate for citric acid was 34.8 g g-1 root DW h-1. Over the 48-hour period a net efflux (i.e. exudation) of labelled plus unlabelled C was observed at a rate of 608 g C g-1 root DW h-1 (equivalent to 1520 g glucose/mannose). Of the C released as root exudates, a minimum estimate of the amount of C taken back into the plant was therefore 9.5%. The two main C fluxes within the rhizosphere, namely release of C by the root and uptake by the microorganisms, have been well documented in recent years. It is now apparent however that a third flux term, re-sorption of C by roots, can also be identified. This may play an important but previously overlooked role within the rhizosphere, and further work is needed to determine its significance.A comparison between exudate release in static (permitting accumulation of C) and flowing culture (C removed as it is released) was also made with the respective rates being 15.36 and 45.18 mg C g-1 root DW in 2 days. The relative important of re-sorption in natural environments and laboratory experiments is discussed.  相似文献   

10.
Serpentine and non-serpentine plants of Alyssum murale, a nickel (Ni) accumulator plant, from North Greece, were studied in order to examine: (1) The ability of natural plants to accumulate metals; (2) the ability of their seedlings to tolerate increasing concentrations of Ni2+ or Mn2+ (0, 0.16, 0.32, 0.5 and 1 mmol/L), when grown in nutrient solution; (3) the activities and electrophoretic patterns of root and shoot DNases and RNases under the above conditions. Measurements of metal concentrations in serpentine and non-serpentine natural plants and the respective soils revealed: (1) Very low calcium (Ca)/magnesium (Mg) (0.16) ratio and high concentration of Ni in serpentine soil; (2) very high Ca/Mg (17) ratio and high concentration of manganese (Mn) in non-serpentine soil; (3) the ability of serpentine natural plants to accumulate Ni and the inability of plants of both serpentine and non-serpentine populations to accumulate Mn. A. murale plants grown in nutrient solution with increasing Ni2+ or Mn2+ concentrations showed a negative correlation between the Ni2+ or Mn2+ concentrations in the nutrient solution, and the chlorophyll concentration, shoot and especially root length. The accumulation of Ni2+ or Mn2+ in the plant showed a positive correlation with increasing Ni2+ or Mn2+ concentrations in the nutrient solution. Application of 0.5 mmol/L Ni2+ or Mn2+ resulted in the inhibition of DNase activities and the appearance of a new DNase form, in both root and shoot detected by electrophoresis in active ssDNA polyacrylamide gel. The new gel-extracted DNase showed nicking action against plasmid DNA and has been characterised as an endo-DNase. In contrast, electrophoretic patterns and RNase activities were unaffected. According to our studies on growth, both serpentine and non-serpentine plants of A. murale have a constitutive ability to tolerate and accumulate Ni2+ or Mn2+; they have similar DNase and RNase electrophoretic patterns and show a new DNase form under Ni2+ or Mn2+ stress. This is the first report on the response of nucleolytic enzymes under metallic elements hyperaccumulation.  相似文献   

11.
The effects of cytokinins on the in vitro growth of the roots of Arabidopsis thaliana seedlings were examined. Root growth was inhibited in a manner dependent upon the type of cytokinin compound, the cytokinin concentration, the Arabidopsis genotype, and the duration of exposure to cytokinin. For the cytokinins N 6-benzyladenine (BA), isopentenyl adenine (iP), or dihydrozeatin (DHZ), the concentration required for 50% root growth inhibition differed for each cytokinin and in each of three Arabidopsis genotypes tested. iP was the most active cytokinin in inhibiting the root growth of the Ler-0 genotype, whereas iP and BA had equal activity when tested with the Col-2 and Columbia genotypes. DHZ had the lowest activity of the three cytokinins tested in all three genotypes. A brief 1-day exposure of seeds to a root-inhibiting concentration of BA increased root growth compared with seedlings grown without BA; exposure to BA for 3–6 days inhibited root growth. BA metabolism was evaluated after 6 h and 1, 3, and 6 days in Columbia seedlings. BA, N 6-benzyladenosine (BAR), and N 6-benzyladenosine-5-monophosphate (BAMP) decreased with time, whereas N 6-benzyladenine-7--d-glucopyranoside (BA-7-G) and N 6-benzyladenine-9--d-glucopyranoside (BA-9-G) accumulated in the growing seedlings. Seven aromatic cytokinins were compared at 5 m for their effect on Col-3 root growth. BA, BAR, N 6-(m-hydroxybenzylamino)adenine, and N 6-(o-hydroxybenzylamino)adenine were highly effective in inhibiting root growth, whereas N 6-(p-hydroxybenzylamino)adenine produced only a slight decrease in root growth. BA-7-G and BA-9-G did not affect root growth.Abbreviations BA N 6-benzyladenine - iP isopentenyl-adenine - DHZ dihydrozeatin - BAR N 6-benzyladenosine - BAMP N 6-benzyladenosine 5-monophosphate - BA-7-G N 6-benzyladenine-7--d-glucopyranoside - BA-9-G N 6-benzyladenine-9--d-glucopyranoside - m-OH BA N 6-(m-hydroxybenzylamino)adenine - o-OH BA N 6-(o-hydroxybenzylamino)adenine - p-OH BA N 6-(p-hyrdoxybenzylamino)adenine - HPLC high performance liquid chromatography - gFW grams fresh weight  相似文献   

12.
Zinc-phosphorus interactions have been frequently studied using a diverse number of crop species, but attainment of reproducible Zn deficiencies, especially severe ones, has been hampered by the use of conventional hydroponic solutions wherein contaminating levels of Zn are often near-adequate for normal growth. We utilized novel, chelator-buffered nutrient solutions for precise imposition of Zn deficiencies. Tomato (Lycopersicon esculentum L. cv. Jackpot or Celebrity) seedlings were grown for 15 to 18 d in nutrient solutions containing 200, 600, or 1200 M P, and 0 to 91 M total Zn. Computed free Zn2+ activities were buffered at 10-10.3 M by inclusion of a 100-M excess (above the sum of the micronutrient metal concentrations) of the chelator DTPA. At total added Zn=0, acute Zn deficiency resulted in zero growth after seedling transfer, and plant death prior to termination. Free Zn2+ activities 10-10.6 M resulted in Zn deficiencies ranging from mild to severe, but activities 10-11.2 were required to cause hyperaccumulation of shoot P to potentially toxic levels. Despite severe Zn deficiency (i.e. ca. 20% of control growth), tissue Zn levels were usually much higher than the widely reported critical value of 20 mg kg-1, which may be an artifact of the selection of DTPA for buffering free Zn2+. Across Zn treatments, increasing solution P depressed growth slightly, especially in Celebrity, but corresponding increases in tissue P (indicative of enhanced P toxicity) or decreases in tissue Zn (P-induced Zn deficiency) were not observed. The depressive effect of P was also not explained by reductions in the water-soluble Zn fraction. Within 40 h, restoration of Zn supply did not ameliorate high leakage rates (as measured by K+ efflux) of Zn-deficient roots. Similarly, transfer of Zn-sufficient plants to deficient solutions did not induce leakiness within 40 h. Foliar sprays of ZnSO4 almost completely corrected both Zn deficiency and membrane leakiness of plants grown in low-Zn solutions. Hence, maintenance of root membrane integrity appears to depend on the overall Zn nutritional status of the plant, and not on the presence of certain free Zn2+ levels in the root apoplasm.  相似文献   

13.
Copper-induced metallothionein (MT) synthesis in Saccharomyces cerevisiae was investigated in order to associate this exclusively with Cu2+ in vivo, when cultured in nutrient medium containing other heavy metal ions. Expression of the CUP1 promoter/lacZ fusion gene was inhibited by all heavy metal ions tested, especially Cd2+ and Mn2+. By adding Cd2+ and Mn2+ at 10 M concentration, the -galactosidase activity decreased by about 80% and 50% of the maximum induction observed with 1 mM CuSO4, respectively. Furthermore, cell growth was markedly inhibited by combinations of 1 mM-Cu2+ and 1 M-Cd2+. Therefore, the yeast S. cerevisiae could not rely on MT synthesis as one of the copper-resistance mechanisms, when grown in a Cd2+ environment. In contrast, the presence of Mn2+ in the nutrient medium showed alleviation rather than growth inhibition by high concentrations of Cu2+. The recovery from growth inhibition by Mn2+ was due to decreased Cu2+ accumulation. Inhibitory concentrations of Co2+, Ni2+ and Zn2+ on expression of the CUP1p/lacZ fusion gene were at least one order of magnitude higher than that of Cd2+ and Mn2+. These results are discussed in relation to Cu2+ transport and Cu-induced MT synthesis in the copper-resistance mechanism of the yeast S. cerevisiae.  相似文献   

14.
The impacts of global climatic change on belowground ecological processes of terrestrial ecosystems are still not clear. We therefore conducted an experiment in the subalpine coniferous forest ecosystem of the eastern edges of the Tibetan Plateau to study roots of Picea asperata seedlings and rhizosphere soil responses to soil warming and nitrogen availability from April 2007 to December 2008. The seedlings were subjected to two levels of temperature (ambient; infrared heater warming) and two nitrogen levels (0 or 25 g m−2year−1 N). We used a free air temperature increase from an overhead infrared heater to raise both air and soil temperature by 2.1 and 2.6°C, respectively. The results showed that warming alone significantly increased total biomass, coarse root biomass and fine root biomass of P. asperata seedlings. Both total biomass and fine root biomass were increased, but coarse root biomass was significantly decreased by nitrogen fertilization and warming combined with nitrogen fertilization. Warming induced a prominent increase in soil organic carbon (SOC) and NO3 -N of rhizosphere soil, while nitrogen fertilization significantly decreased SOC and NH4 +-N of rhizosphere soil. The warming, fertilization and warming × N fertilization interaction decreased soil microbial C significantly, but substantially increased soil microbial N. These results suggest that nitrogen deposition combined with warmer temperatures under future climatic change possibly will have no effect on fine root production of P. asperata seedlings, but could enhance the nitrification process of their rhizosphere soils in subalpine coniferous forests.  相似文献   

15.
Plant control of rhizosphere pH is important for nutrient mobilization and uptake, and also affects microbial activity and pathogens in the vicinity of the root. Limited information is available on the ability of plant species and genotypes within a species to induce pH changes in the rhizosphere. A growth chamber study was conducted to characterize patterns of pH change within the rhizosphere of selected genotypes in an alkaline environment with a balanced nutrient supply. After germination in incubators, seedlings of 32 genotypes of maize (Zea mays L.), soybean (Glycine max. L.), sorghum (Sorghum bicolor L.), sordan [sorghum (Sorghum bicolor L.), sudangrass (Sorghum sudanese L.) hybrid], wheat (Triticum aestivum L.), oats (Avena sativa L.), and barley (Hordeum vulgare L.) were transferred into aseptic agar medium (pH 7.6) with bromocresol purple indicator. Ability of the embedded roots to induce rhizosphere pH change was followed by photographing the color change of the bromocresol purple indicator. The pH for selected genotypes at different root zones (maturation, elongation, meristematic) was also monitored by a microelectrode at 1-, 2-, 3- and 4-mm distances from the root surface. Rhizosphere acidification for selected genotypes within a species were in the order: soybean, Hawkeye>PI-54169; maize, Pioneer-3737>Pioneer-3732>CM-37; sordan, S-757>S-333; sorghum, SC-33-8-9EYSC-118-15E; barley, Bowman>Primus II; oats, Hytest>SD-84104. The pH patterns within the root system varied from species to species. The highest amount of acidification was found at the elongation and meristematic zones for soybean, while the highest amount of acidification was found at the maturation zone for barley under the same experimental conditions. The agar method allowed the determination of a genotype's capability to induce rhizosphere pH changes while the microelectrode method is necessary for quantifying the spatial variation of specific root developmental zones with high resolution.This work is a part of H.T. Gollany's dissertation in partial fulfillment of the requirements for the PhD degree.  相似文献   

16.
The possibility that an enhanced supply of dissolved inorganic carbon (DIC=CO2+HCO3-) to the root solution could increase the growth of Lycopersicon esculentum (L.) Mill. cv. F144 was investigated under both saline and non-saline root medium conditions. Tomato seedlings were grown in hydroponic culture with and without NaCl and the root solution was aerated with CO2 concentrations in the range between 0 and 5000 mol mol-1. The biomass of both control and salinity-stressed plants grown at high temperatures (daily maximum of 37C) and an irradiance of 1500 mol m-2 s-1 was increased by up to 200% by enriched rhizosphere DIC. The growth rates of plants grown with irradiances of less than 100 mol m-2 s-1 were increased by elevated rhizosphere DIC concentrations only when grown at high shoot temperatures (35C) or with salinity 28°C). At high light intensities, the photosynthetic rate, the CO2 and light-saturated photosynthetic rate (jmax) and the stomatal conductance of plants grown at high light intensity were lower in plants supplied with enriched compared to ambient DIC. This was interpreted as 'down-regulation' of the photosynthetic system in plants supplied with elevated DIC. Labelled organic carbon in the xylem sap derived from root DI14C incorporation was found to be sufficient to deliver carbon to the shoot at rates equivalent to 1% and 10% of the photosynthetic rate of the plants supplied with ambient- and enriched-DIC, respectively. It was concluded that organic carbon derived from DIC incorporation and translocated in the xylem from the root to the shoot may provide a source of carbon for the shoots, especially under conditions where low stomatal conductance may be advantageous, such as salinity stress, high shoot temperatures and high light intensities.  相似文献   

17.
细根分解和周转是土壤有机质和养分的重要来源。为探明不同石漠化程度天然草地细根对土壤养分的贡献,于2017年3月至次年1月,采用土柱法和分解袋法,研究不同石漠化程度下天然草地的细根生物量、分解和养分释放动态及对石漠化的响应。结果表明:3种不同石漠化程度下草地的细根生物量随季节均呈现先增加后降低的趋势,随石漠化程度的加剧均呈现逐渐降低的趋势,潜在、中度和强度石漠化草地的细根生物量分别为3355.65、2944.02 g/m~2和1806.80 g/m~2。细根分解速率呈现先快后慢的趋势,分解300天后的残留率均低于50%。细根有机碳、全氮、全磷和全钾的释放过程具有显著不同,释放模式最终均表现为"释放",潜在、中度和强度石漠化草地细根的有机碳、全氮、全磷、全钾的年归还量分别为32.46—161.08、0.24—3.88、0.08—0.32、0.15—2.78 g/m~2。随石漠化程度的加剧,细根生物量和分解率呈现逐渐降低趋势,土壤有机碳、全氮归还量呈现逐渐增加趋势。  相似文献   

18.
(R)-(1-Amino-2-phenylethyl)phosphonic acid (R-APEP), an inhibitor of phenylalanine ammonia-lyase (PAL), was applied to the tap root of 42-h-old soybean (Glycine max. (L.) Merrill cv. Harosoy 63) seedlings during inoculation with zoospores of the incompatible race 1 of Phytophthora megasperma f.sp. glycinea (Pmg1) for 2 h and during a subsequent incubation period. In contrast to L-2-aminooxy-3-phenylpropionic acid, R-APEP was not toxic to the zoospores which remained virulent in presence of the inhibitor. A 50% inhibition of PAL activity in vitro was observed with 4.2 M R-APEP and with 36 M of the S-enantiomer. When R-APEP at 330 M was applied for a total of 36 h to the seedlings, resistance against Pmg 1 was abolished. Such seedlings were indistinguishable in appearance from those seedlings which had been inoculated with the compatible race 3 of Pmg. Roots treated with R-APEP at 330 M showed a reduction of about 47% in glyceollin content when measured 12 h after inoculation, and with 1 mM a 67% reduction. In contrast, treatment with S-APEP (1 mM) caused only a 20% reduction in glyceollin content. As determined by indirect immunofluorescence of fungal hyphae in cryotome cross-sections of roots, the growth pattern of the incompatible race 1 of Pmg changed to that of the compatible race 3 under conditions where R-APEP caused loss of resistance against Pmg 1. The results support the concept of an important role of glyceollin in resistance of soybean against incompatible races of the fungus.Abbreviations R-APEP, S-APEP R.S enantiomers of (1-amino-2-phenylethyl)phosphonic acid - L-AOPP L-2-aminooxy-3-phenylpropionic acid - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - Pmg 1 Phytophthora megasperma f.sp. glycinea race 1 - Pmg 3 Phytophthora megasperma f.sp. glycinea race 3  相似文献   

19.
This review highlights a potential signaling pathway of CO2-dependent stimulation in root hair development. Elevated CO2 firstly increases the carbohydrates production, which triggers the auxin or ethylene responsive signal transduction pathways and subsequently stimulates the generation of intracellular nitric oxide (NO). The NO acts on target Ca2+ and ion channels and induces activation of MAPK. Meanwhile, reactive oxygen species (ROS) activates cytoplasmic Ca2+ channels at the plasma membrane in the apex of the root tip. This complex pathway involves transduction cascades of multiple signals that lead to the fine tuning of epidermal cell initiation and elongation. The results suggest that elevated CO2 plays an important role in cell differentiation processes at the root epidermis.Key words: elevated CO2, root hairs, carbohydrate, auxin, ethylene, NO, ROS, Ca2+, genetic elementsIncreasing concentration of atmospheric CO2 in the 21st century will impact many aspects of the human and natural world. Elevated CO2 has some beneficial physiological effects on plants but nutrient limitation has generally been found to suppress these beneficial effects.1 Therefore, under conditions of suboptimal supply of nutrients and elevated CO2, the plants need to develop adaptive mechanisms to enhance nutrient acquisition, among which the plasticity of root development is of crucial importance.Root hairs make a significant contribution to increasing root surface area and facilitating physical anchorage to a substrate and providing a large interface for nutrient uptake.2 Root-hair cells are highly polarized cellular structures resulting from tip growth of specific epidermal cells, which are controlled by multiple cellular factors and genetic processes.3,4 Previous studies have shown that root hair development can influenced by various environmental factors, such as nutritional status,5 mycorrhizal infection and water stress,6 salinity7 and light intensity.8 Our current research has demonstrated a profound effect of elevated CO2 on development of root hairs in Arabidopsis, which works through the well-characterized auxin signal transduction pathway.9 Since root hairs are an efficient strategy to alleviate the limitation of nutrients, one promising area of future research will be to discover the pathway that control root hair differentiation in crops under elevated CO2. In this paper, we discussed a layer pathway in the interaction between CO2 and some classical signals on regulating gene regulatory network to control development of root hairs.  相似文献   

20.
Killham  Ken  Yeomans  Catrin 《Plant and Soil》2001,232(1-2):91-96
Despite the fundamental importance of rhizosphere C-flow in managed and natural systems, reliable measurement/resolution of C-flow and assessment of its consequences have largely remained elusive to soil biologists. Techniques involving both radioactive (14C) and stable (13C) isotopes of carbon have made some progress in terms of studying rhizosphere C-flow. Pulse-chase techniques have been used effectively to study dynamics of C-transfer to the rhizosphere and rhizosphere microbial biomass. The information obtained through pulse-chase is strongly dependent on the chase period following the labelling event. Continuous labelling is primarily used to determine plant inputs to soil over an extended time period and includes all kinds of C input – from root turnover, root respiration, root exudation, production of mucilage, etc. One of the main constraints to both approaches is that distinguishing root from microbial respiration is difficult, if not impossible. 13C techniques have gone some way towards resolving this difficulty, although 13C signatures in the plant–soil system are not easy to interpret and detailed resolution of carbon flow through different components of the rhizosphere biomass is unlikely to be achieved in such an inherently `noisy' system. Recent developments in molecular biology now provide a new opportunity to resolve rhizosphere C-flow and its implications. Reporter gene systems where, for example, rhizobacteria are marked with lux and unstable gfp reporters, overcome the difficulty of distinguishing root and microbial C fluxes and complement the isotopic and more traditional approaches. Reporter systems have now begun to resolve the competitive C sink strengths of different components of the rhizosphere microbial community and assess how a rhizobacterial inoculum may change C-flow in applications such as disease control and rhizoremediation of contaminated land. Fusion of reporter genes to nutrient (N and P) starvation genes in rhizobacteria has also enabled in situ characterisation of nutrient depletion around the root and assessment of the impact of changes in C-flow (such as those induced by climate change) on nutrient depletion dynamics. The availability of an integrated approach involving isotopic, molecular biological and other techniques now offers an exciting new era where reliable measurement and resolution of rhizosphere C-flow (and its consequences) can contribute to our understanding of ecosystem function and to management of crop-microbe interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号