首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A homologue of the Escherichia coli penicillin acylase is encoded in the genomes of several thermophiles, including in different Thermus thermophilus strains. Although the natural substrate of this enzyme is not known, this acylase shows a marked preference for penicillin K over penicillin G. Three-dimensional models were created in which the catalytic residues and the substrate binding pocket were identified. Through rational redesign, residues were replaced to mimic the aromatic binding site of the E. coli penicillin G acylase. A set of enzyme variants containing between one and four amino acid replacements was generated, with altered catalytic properties in the hydrolyses of penicillins K and G. The introduction of a single phenylalanine residue in position α188, α189, or β24 improved the Km for penicillin G between 9- and 12-fold, and the catalytic efficiency of these variants for penicillin G was improved up to 6.6-fold. Structural models, as well as docking analyses, can predict the positioning of penicillins G and K for catalysis and can demonstrate how binding in a productive pose is compromised when more than one bulky phenylalanine residue is introduced into the active site.  相似文献   

2.
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser105 residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T5015, the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.  相似文献   

3.
The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2) emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the ‘stability-function tradeoff’ phenomenon. The high Tm of KPC-2 (66.5°C) provides an evolutionary advantage as compared to other class A enzymes such as TEM (51.5°C) and CTX-M (51°C) in that it can acquire multiple destabilizing substitutions without losing the ability to fold into a functional enzyme.  相似文献   

4.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151αF and Q50βN, showed two- to threefold-increased catalytic efficiency (kcat/Km) compared to wild-type CA130. Their Km values were decreased by ca. 50%, and the kcat values increased to 14.4 and 16.9 s−1, respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121βA and K198βA had a 30 to 58% longer half-life than wild-type CA130, and K198βA and D286βA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50βN/K198βA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

5.
DNA polymerase (pol) λ is homologous to pol β and has intrinsic polymerase and terminal transferase activities. However, nothing is known about the amino acid residues involved in these activites. In order to precisely define the nucleotide-binding site of human pol λ, we have mutagenised two amino acids, Tyr505 and the neighbouring Phe506, which were predicted by structural homology modelling to correspond to the Tyr271 and Phe272 residues of pol β, which are involved in nucleotide binding. Our analysis demonstrated that pol λ Phe506Arg/Gly mutants possess very low polymerase and terminal transferase activities as well as greatly reduced abilities for processive DNA synthesis and for carrying on translesion synthesis past an abasic site. The Tyr505Ala mutant, on the other hand, showed an altered nucleotide binding selectivity to perform the terminal transferase activity. Our results suggest the existence of a common nucleotide-binding site for the polymerase and terminal transferase activities of pol λ, as well as distinct roles of the amino acids Tyr505 and Phe506 in these two catalytic functions.  相似文献   

6.
The human DNA polymerase ε catalytic subunit consists of a 140-kDa N‐terminal domain that contains the catalytic activity and a 120-kDa C-terminal domain that binds to the other subunits and to exogenous peptides, including PCNA and MDM2. We report here that recombinant human MDM2 purified from insect cells or Escherichia coli stimulated the activity of DNA polymerase ε up to 10- and 40-fold, respectively, but not those of DNA polymerase β or Klenow fragment of E.coli DNA polymerase I. Kinetic studies indicated that MDM2 increased the maximum velocity of the reaction, but did not change substrate affinities. The stimulation depended upon the interaction of the N‐terminal 166 amino acid residues of MDM2 with the C-terminal domain of the full-length catalytic subunit, since the deletion of 166 amino acids from N‐terminal of MDM2 or the removal of the C-terminal domain of DNA polymerase ε by trypsin digestion or competition for binding to it by the addition of excess C-terminal fragment eliminated the stimulation. Since DNA polymerase ε appears to be involved in DNA replication, recombination and repair synthesis, we suggest that MDM2 binding to DNA polymerase ε might be part of a reconfiguration process that allows DNA polymerase ε to associate with repair/recombination proteins in response to DNA damage.  相似文献   

7.
8.
Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-β-lactamases (MβLs), enzymes able to hydrolyze most β-lactam antibiotics. SPM-1 is an MβL produced only by P. aeruginosa, while other MβLs are found in different bacteria. Despite similar active sites, the resistance profile of MβLs towards β-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MβLs in that it contains “atypical” second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards β-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site.  相似文献   

9.
DNA polymerase δ (Pol δ) is one of the major replicative DNA polymerases in eukaryotic cells, catalyzing lagging strand synthesis as well as playing a role in many DNA repair pathways. The catalytic site for polymerization consists of a palm domain and mobile fingers domain that opens and closes each catalytic cycle. We explored the effect of amino acid substitutions in a region of the highly conserved sequence motif B in the fingers domain on replication fidelity. A novel substitution, A699Q, results in a marked increase in mutation rate at the yeast CAN1 locus, and is synthetic lethal with both proofreading deficiency and mismatch repair deficiency. Modeling the A699Q mutation onto the crystal structure of Saccharomyces cerevisiae Pol δ template reveals four potential contacts for A699Q but not for A699. We substituted alanine for each of these residues and determined that an interaction with multiple residues of the N-terminal domain is responsible for the mutator phenotype. The corresponding mutation in purified human Pol δ results in a similar 30-fold increase in mutation frequency when copying gapped DNA templates. Sequence analysis indicates that the most characteristic mutation is a guanine-to-adenine (G to A) transition. The increase in deoxythymidine 5′-triphosphate-G mispairs was confirmed by performing steady state single nucleotide addition studies. Our combined data support a model in which the Ala-to-Gln substitution in the fingers domain of Pol δ results in an interaction with the N-terminal domain that affects the base selectivity of the enzyme.  相似文献   

10.
Pseudouridine synthase 1 (Pus1p) is an enzyme that converts uridine to Pseudouridine (Ψ) in tRNA and other RNAs in eukaryotes. The active site of Pus1p is composed of stretches of amino acids that are highly conserved and it is hypothesized that mutation of select residues would impair the enzyme's ability to catalyze the formation of Ψ. However, most mutagenesis studies have been confined to substitution of the catalytic aspartate, which invariably results in an inactive enzyme in all Ψ synthases tested. To determine the requirements for particular amino acids at certain absolutely conserved positions in Pus1p, three residues (R116, Y173, R267) that correspond to amino acids known to compose the active site of TruA, a bacterial Ψ synthase that is homologous to Pus1p, were mutated in human Pus1p (hPus1p). The effects of those mutations were determined with three different in vitro assays of pseudouridylation and several tRNA substrates. Surprisingly, it was found that each of these components of the hPus1p active site could tolerate certain amino acid substitutions and in fact most mutants exhibited some activity. The most active mutants retained near wild-type activity at positions 27 or 28 in the substrate tRNA, but activity was greatly reduced or absent at other positions in tRNA readily modified by wild-type hPus1p.  相似文献   

11.
Retaining β-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining β-glucosidases. Whereas β-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining β-glucosidases, β-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining β-glucosidases by the combined use of cyclophellitol β-epoxide- and β-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent β-aziridine but not β-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the β-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining β-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining β-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes.  相似文献   

12.
Benzene dioxygenase and toluene dioxygenase from Pseudomonas putida have similar catalytic properties, structures, and gene organizations, but they differ in substrate specificity, with toluene dioxygenase having higher activity toward alkylbenzenes. The catalytic iron-sulfur proteins of these enzymes consist of two dissimilar subunits, α and β; the α subunit contains a [2Fe-2S] cluster involved in electron transfer, the catalytic nonheme iron center, and is also responsible for substrate specificity. The amino acid sequences of the α subunits of benzene and toluene dioxygenases differ at only 33 of 450 amino acids. Chimeric proteins and mutants of the benzene dioxygenase α subunit were constructed to determine which of these residues were primarily responsible for the change in specificity. The protein containing toluene dioxygenase C-terminal region residues 281 to 363 showed greater substrate preference for alkyl benzenes. In addition, we identified four amino acid substitutions in this region, I301V, T305S, I307L, and L309V, that particularly enhanced the preference for ethylbenzene. The positions of these amino acids in the α subunit structure were modeled by comparison with the crystal structure of naphthalene dioxygenase. They were not in the substrate-binding pocket but were adjacent to residues that lined the channel through which substrates were predicted to enter the active site. However, the quadruple mutant also showed a high uncoupled rate of electron transfer without product formation. Finally, the modified proteins showed altered patterns of products formed from toluene and ethylbenzene, including monohydroxylated side chains. We propose that these properties can be explained by a more facile diffusion of the substrate in and out of the substrate cavity.  相似文献   

13.
The statistical coupling analysis of 768 β-glucosidases from the GH1 family revealed 23 positions in which the amino acid frequencies are coupled. The roles of these covariant positions in terms of the properties of β-glucosidases were investigated by alanine-screening mutagenesis using the fall armyworm Spodoptera frugiperda β-glycosidase (Sfβgly) as a model. The effects of the mutations on the Sfβgly kinetic parameters (k cat/K m) for the hydrolysis of three different p-nitrophenyl β-glycosides and structural comparisons of several β-glucosidases showed that eleven covariant positions (54, 98, 143, 188, 195, 196, 203, 398, 451, 452 and 460 in Sfβgly numbering) form a layer surrounding the active site of the β-glucosidases, which modulates their catalytic activity and substrate specificity via direct contact with the active site residues. Moreover, the influence of the mutations on the transition temperature (T m) of Sfβgly indicated that nine of the coupled positions (49, 62, 143, 188, 223, 278, 309, 452 and 460 in Sfβgly numbering) are related to thermal stability. In addition to being preferentially occupied by prolines, structural comparisons indicated that these positions are concentrated at loop segments of the β-glucosidases. Therefore, due to these common biochemical and structural properties, these nine covariant positions, even without physical contacts among them, seem to jointly modulate the thermal stability of β-glucosidases.  相似文献   

14.
【背景】嗜热Ⅱ型内含子是一类由内含子RNA和内含子编码蛋白(intron encoded protein,IEP)组成且在高温条件下能够在染色体上高频移动的反转录转座子,目前已被开发为高效基因打靶工具Thermotargetron,阐明其活性催化位点,对深入研究其“归巢”机制及开发新型遗传工具具有重要意义。【目的】筛选嗜热Ⅱ型内含子Tel3c/4c-RT结构域关键活性位点,并获得失活反转录功能的内含子编码蛋白突变体。【方法】先利用生物信息学技术分析并筛选可能影响Tel3c/4c-RT反转录功能的关键氨基酸位点;然后对筛选到的关键氨基酸位点进行定点突变,并以Thermotargetron质粒为基础构建失活反转录功能的突变型嗜热Ⅱ型内含子打靶系统;最后以大肠杆菌lacZ基因为例,通过蓝白斑计数分析突变型Thermotargetron系统的打靶效率,体内验证Tel3c/4c-RT结构域关键活性位点突变对嗜热Ⅱ型内含子打靶效率的影响。【结果】共筛选到15个可能影响反转录活性的氨基酸位点,包括D194、I195、S196、G197、C198、F199、Q241、G242、R274、Y275、A2...  相似文献   

15.
16.
Flexible NC-loops between the catalytic domain and the cap domain of the α/β hydrolase fold enzymes show remarkable diversity in length, sequence, and configuration. Recent investigations have suggested that the NC-loop might be involved in catalysis and substrate recognition in many enzymes from the α/β hydrolase fold superfamily. To foster a deep understanding of its role in catalysis, stability, and divergent evolution, we here systemically investigated the function of the NC-loop (residues 131–151) in a lipase (FClip1) from thermophilic bacterium Fervidobacterium changbaicum by loop deletion, alanine-scanning mutagenesis and site-directed mutagenesis. We found that the upper part of the NC-loop (residues 131–138) was of great importance to enzyme catalysis. Single substitutions in this region could fine-tune the activity of FClip1 as much as 41-fold, and any deletions from this region rendered the enzyme completely inactive. The lower part of the NC-loop (residues 139–151) was capable of enduring extensive deletions without loss of activity. The shortened mutants in this region were found to show both improved activity and increased stability simultaneously. We therefore speculated that the NC-loop, especially the lower part, would be a perfect target for enzyme engineering to optimize the enzymatic properties, and might present a hot zone for the divergent evolution of α/β hydrolases. Our findings may provide an opportunity for better understanding of the mechanism of divergent evolution in the α/β hydrolase fold superfamily, and may also guide the design of novel biocatalysts for industrial applications.  相似文献   

17.
Bacterial and fungal members of the ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family use the NAT signature motif, a conserved 11-amino acid sequence between amphipathic helices TM9a and TM9b, to define function and selectivity of the purine binding site. To examine the role of flanking helices TM9a, TM9b, and TM8, we employed Cys-scanning analysis of the xanthine-specific homolog YgfO from Escherichia coli. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequences 259FLVVGTIYLLSVLEAVGDITATAMVSRRPIQGEEYQSRLKGGVLADGLVSVIASAV314 and 342TIAVMLVILGLFP354 including these TMs (underlined) was replaced individually with Cys, except the irreplaceable Glu-272 and Asp-304, which had been studied previously. Of 67 single Cys mutants, 55 accumulate xanthine to 35–140% of the steady state observed with C-less, five (I265C, D276C, I277C, G299C, L350C) accumulate to low levels (10–20%) and seven (T278C, A279C, T280C, A281C, G305C, G351C, P354C) show negligible expression in the membrane. Extensive mutagenesis reveals that a carboxyl group is needed at Asp-276 for high activity and that D276E differs from wild type as it recognizes 8-methylxanthine (Ki 79 μm) but fails to recognize 2-thioxanthine, 3-methylxanthine or 6-thioxanthine; bulky replacements of Ala-279 or Thr-280 and replacements of Gly-305, Gly-351, or Pro-354 impair activity or expression. Single Cys mutants V261C, A273C, G275C, and S284C are sensitive to inactivation by N-ethylmaleimide and sensitivity of G275C (IC50 15 μm) is enhanced in the presence of substrate. The data suggest that residues crucial for the transport mechanism cluster in two conserved motifs, at the cytoplasmic end of TM8 (EXXGDXXAT) and in TM9a (GXXXDG).  相似文献   

18.
Actinobacterial 2-hydroxyacyl-CoA lyase reversibly catalyzes the thiamine diphosphate-dependent cleavage of 2-hydroxyisobutyryl-CoA to formyl-CoA and acetone. This enzyme has great potential for use in synthetic one-carbon assimilation pathways for sustainable production of chemicals, but lacks details of substrate binding and reaction mechanism for biochemical reengineering. We determined crystal structures of the tetrameric enzyme in the closed conformation with bound substrate, covalent postcleavage intermediate, and products, shedding light on active site architecture and substrate interactions. Together with molecular dynamics simulations of the covalent precleavage complex, the complete catalytic cycle is structurally portrayed, revealing a proton transfer from the substrate acyl Cβ hydroxyl to residue E493 that returns it subsequently to the postcleavage Cα-carbanion intermediate. Kinetic parameters obtained for mutants E493A, E493Q, and E493K confirm the catalytic role of E493 in the WT enzyme. However, the 10- and 50-fold reduction in lyase activity in the E493A and E493Q mutants, respectively, compared with WT suggests that water molecules may contribute to proton transfer. The putative catalytic glutamate is located on a short α-helix close to the active site. This structural feature appears to be conserved in related lyases, such as human 2-hydroxyacyl-CoA lyase 2. Interestingly, a unique feature of the actinobacterial 2-hydroxyacyl-CoA lyase is a large C-terminal lid domain that, together with active site residues L127 and I492, restricts substrate size to ≤C5 2-hydroxyacyl residues. These details about the catalytic mechanism and determinants of substrate specificity pave the ground for designing tailored catalysts for acyloin condensations for one-carbon and short-chain substrates in biotechnological applications.  相似文献   

19.
High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering strategy may be useful for the protein engineering of the other microbial enzymes to fulfill industrial requirements.  相似文献   

20.
In the central nervous system, three enzymes belonging to the serine hydrolase family are thought to regulate the life time of the endocannabinoid 2-arachidonoylglycerol (C20:4) (2-AG). From these, monoacylglycerol lipase (MAGL) is well characterized and, on a quantitative basis, is the main 2-AG hydrolase. The postgenomic proteins α/β-hydrolase domain containing (ABHD)6 and ABHD12 remain poorly characterized. By applying a sensitive fluorescent glycerol assay, we delineate the substrate preferences of human ABHD6 and ABHD12 in comparison with MAGL. We show that the three hydrolases are genuine MAG lipases; medium-chain saturated MAGs were the best substrates for hABHD6 and hMAGL, whereas hABHD12 preferred the 1 (3)- and 2-isomers of arachidonoylglycerol. Site-directed mutagenesis of the amino acid residues forming the postulated catalytic triad (ABHD6: S148-D278-H306, ABHD12: S246-D333-H372) abolished enzymatic activity as well as labeling with the active site serine-directed fluorophosphonate probe TAMRA-FP. However, the role of D278 and H306 as residues of the catalytic core of ABHD6 could not be verified because none of the mutants showed detectable expression. Inhibitor profiling revealed striking potency differences between hABHD6 and hABHD12, a finding that, when combined with the substrate profiling data, should facilitate further efforts toward the design of potent and selective inhibitors, especially those targeting hABHD12, which currently lacks such inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号