首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned the entire human adenovirus type 5 (Ad5) genome into the pBR322 plasmid in two segments: the BamHI-A fragment (21 kb) and the BamHI-B fragment (15 kb). We have also generated a series of clones with smaller Ad5 DNA inserts, all containing the left-end of the viral genome. One such clone, pXCl, containing the left 16% of the Ad5 DNA molecule, has been shown to transform rodent cells by DNA transfection. We have used the transposable element Tn5 as an insertion mutator to isolate pXCl mutants containing Tn 5 inserted at a large number of sites. By assaying transforming activity of selected pXC::Tn5 plasmids we have identified Ad5 sequences which are essential for DNA-mediated transformation. Our results with these mutants and with a plasmid pCDl, containing a deletion within the Ad5-transforming region, indicate that sequences present in both early region la and the N-terminal region of early region 1b are essential for DNA-mediated transformation.  相似文献   

2.
The integration pattern of viral DNA was studied in a number of cell lines transformed by wild-type adenovirus type 5 (Ad5 WT) and two mutants of the DNA-binding protein gene, H5ts125 and H5ts107. The effect of chemical carcinogens on the integration of viral DNA was also investigated. Liquid hybridization (C(0)t) analyses showed that rat embryo cells transformed by Ad5 WT usually contained only the left-hand end of the viral genome, whereas cell lines transformed by H5ts125 or H5ts107 at either the semipermissive (36 degrees C) or nonpermissive (39.5 degrees C) temperature often contained one to five copies of all or most of the entire adenovirus genome. The arrangement of the integrated adenovirus DNA sequences was determined by cleavage of transformed cell DNA with restriction endonucleases XbaI, EcoRI, or HindIII followed by transfer of separated fragments to nitrocellulose paper and hybridization according to the technique of E. M. Southern (J. Mol. Biol. 98: 503-517, 1975). It was found that the adenovirus genome is integrated as a linear sequence covalently linked to host cell DNA; that the viral DNA is integrated into different host DNA sequences in each cell line studied; that in cell lines that contain multiple copies of the Ad5 genome the viral DNA sequences can be integrated in a single set of host cell DNA sequences and not as concatemers; and that chemical carcinogens do not alter the extent or pattern of viral DNA integration.  相似文献   

3.
Four transformed cell lines were established from cultures of human embryo kidney (HEK) cells microinjected or transfected with cloned adenovirus 12 (Ad12) EcoRI-C DNA (0 through 16.5 map units of the left-hand end of the viral genome). Each cell line showed a different growth pattern. Southern blotting demonstrated that all of the cell lines contained Ad12-specific DNA sequences, but in the microinjected isolates these were at a much lower copy number than in the transfected isolate. Two cell lines (Ad12 HEK 1 and 3) appeared to contain tandemly repeated Ad12 EcoRI-C DNA fragments. Immunoprecipitation and Western blotting confirmed that Ad12 early region 1 (E1) proteins were being expressed by all four of the transformed cell lines, but indicated that E1A polypeptide expression was considerably less than E1B polypeptide expression. All of the Ad12-transformed HEK cell lines were tumorigenic when inoculated intracranially into athymic nude mice.  相似文献   

4.
Adenovirus (Ad) vectors for gene therapy are made replication defective by deletion of E1 region genes. For isolation, propagation, and large-scale production of such vectors, E1 functions are supplied in trans from a stable cell line. Virtually all Ad vectors used for clinical studies are produced in the 293 cell, a human embryonic kidney cell line expressing E1 functions from an integrated segment of the left end of the Ad type 5 (Ad5) genome. Replication-competent vector variants that have regained E1 sequences have been observed within populations of Ad vectors grown on 293 cells. These replication-competent variants presumably result from recombination between vector and 293 cell Ad5 sequences. We have developed Ad2-based vectors and have characterized at the molecular level examples of replication-competent variants. All such variants analyzed are Ad2-Ad5 chimeras in which the 293 cell Ad5 E1 sequences have become incorporated into the viral genome by legitimate recombination events. A map of Ad5 sequences within the 293 cell genome developed in parallel is consistent with the proposed recombination events. To provide a convenient vector production system that circumvents the generation of replication-competent variants, we have modified the Ad2 vector backbone by deleting or rearranging the protein IX coding region normally present downstream from the E1 region such that the frequency of recombination between vector and 293 cell Ad5 sequences is greatly reduced. Twelve serial passages of an Ad2 vector lacking the protein IX gene were carried out without generating replication-competent variants. In the course of producing and testing more than 30 large-scale preparations of vectors lacking the protein IX gene or having a rearranged protein IX gene, only three examples of replication-competent variants were observed. Use of these genome modifications allows use of conventional 293 cells for production of large-scale preparations of Ad-based vectors lacking replication-competent variants.  相似文献   

5.
A peculiar phenomenon is observed in several adenovirus type 2 or 5 (Ad2 or Ad5) transformed cell lines: the right hand and left hand terminal regions of the viral genome present in the viral DNA insertions of these cell lines are found to be linked together. A large part of the viral DNA insertion present in the Ad5 transformed rat cell line 5RK20 has been cloned in the lambda vector Charon21A, including the segment containing the linked terminal regions. Sequence analysis of the linkage region showed a perfect homology with the Ad5 DNA sequence and a direct linkage of basepair (bp) 63 of the left hand end of the viral genome to bp 108 of the right hand end. No cellular or rearranged viral sequences were present. Our findings suggest that the joining of viral sequences into the cellular genome.  相似文献   

6.
Human adenovirus type 5 (Ad5) contains a 36-kb double-stranded DNA molecule in an icosahedral capsid. Attempts to construct Ad5 insertion mutants containing DNA of more than about 105% of the genome size resulted in viral progeny in which deletions had occurred suggesting the existence of severe constraints on the size of packageable DNA molecules. To partially circumvent these constraints we used an adenovirus vector, Ad5dlE1,3, with deletions in early regions 1 (E1) and 3 for a total net reduction in genome size of 5349 bp and an expected capacity for inserts of greater than 7 kb. To use this vector efficiently we generated a circular form of dlE1,3 DNA which could be propagated as an infectious bacterial plasmid. When this plasmid was used as a recipient for inserts of various sizes it was found that its capacity was much less than expected and that dlE1,3 virion capsids could not even package DNA as large as the wt genome. Because the E1 deletion of dlE1,3 extends into the coding sequences for protein IX, a minor capsid component known to affect the heat stability of adenovirions, the possibility that absence of this polypeptide might also affect the DNA capacity of the virion was investigated. It was found that when the coding sequences for protein IX were restored the packaging capacity of the vector was also restored to that of wt virions. Thus protein IX is an essential constituent of virion capsids dispensable only for virions containing DNA of less than genomic size.  相似文献   

7.
S Molineaux  J E Clements 《Gene》1983,23(2):137-148
Visna viral DNA, like other retroviral DNA, exists in two circular forms in infected cells. The larger probably contains two copies of the LTR, the smaller, one copy. Recombinant DNA techniques were used to clone unintegrated circular visna viral DNA in the lambda WES . lambda B vector. Circular visna viral DNA was digested with the restriction enzyme SstI, which yields a 9.2-kb viral DNA fragment containing 90% of the viral genome colinear with the restriction map of linear viral DNA. This fragment extends from a site about 900 bp from the left (5') end of the viral DNA molecule, through the 3' region, including U3 and R sequences at its right (3') end. The recombinant clones isolated contain visna viral DNA inserts which range in size from 3.1 kb to 9.2 kb. All the clones contain the 5' region intact, but most had sustained deletions of varying lengths in the 3' terminal region of the cloned fragment.  相似文献   

8.
谭维彦  阮力 《病毒学报》1994,10(3):197-208
本文将Ad4基因组相当于73.3-89.2基因图谱单位的DNA片段进行了序列测定及基因结构分析,它包括了Ad4E3区全基因及该区两侧的部分序列。序列分析表明,Ad4 E3区从TATAA box起至该区基因结束共4778bp,编码11个大于6kD的开放读码框架。对Ad4 E3区ORF分析结果表明,Ad4 E3区编码的19.3k,15k,10.4k蛋白,分别与Ad2 E3区的gp19k,14.k和10  相似文献   

9.
Previous analyses have demonstrated that adenovirus DNA is packaged into virions in vivo in a polar, left-to-right fashion. The packaging of viral DNA is dependent on cis-acting elements at the left end of the genome. In this report, we describe a genetic analysis of the sequences that are required for efficient packaging of adenovirus type 5 (Ad5) DNA. Our results demonstrate that the Ad5 packaging domain (nucleotides 194 to 358) is composed of at least five distinct elements that are functionally redundant. An AT-rich repeated sequence motif, the A repeat, is located in four of five of these regions; the fifth region is also AT rich. The efficiency of viral packaging depends on the number of individual A repeats that are present in the viral genome. The deletion of the entire packaging domain resulted in the loss of virus viability. A virus that contains a multimerized oligonucleotide corresponding to A repeat II in place of the packaging domain could package viral DNA, although with reduced efficiency compared with that of the wild-type virus. Our results also suggest that the spacing of specific sequences at the left end of the Ad5 genome are important for enhancer region function in vivo.  相似文献   

10.
A DNA segment carrying viral DNA was cloned from a rat cell line transformed by the cloned EcoRI-C fragment (0 to 16.4 map units) of human adenovirus type 12(Ad12), and the viral sequence in the clone was analysed. The cloned segment contained the region from nucleotide positions 118 to 3520 of the Ad12 genome in the middle. No unique structure was found at the viral and non-viral DNA junctions. When examined the transforming activity, the conserved viral sequence was able to transform rat 3Y1 cells efficiently. Southern blotting analysis of the viral sequence in five re-transformed cell lines showed that the viral sequence was inserted at different sites of cellular DNA. These results indicate that (I) the Ad12 DNA moiety from the enhancer-promoter region of the E1A gene to the end of the E1B gene contains enough information for efficient transformation of the rat cell, and (II) integration of the viral sequence at unique cellular sites is not prerequisite for transformation.  相似文献   

11.
Peter Palese 《Cell》1977,10(1):1-10
The 5′ terminal sequences of several adenovirus 2 (Ad2) mRNAs, isolated late in infection, are complementary to sequences within the Ad2 genome which are remote from the DNA from which the main coding sequence of each mRNA is transcribed. This has been observed by forming RNA displacement loops (R loops) between Ad2 DNA and unfractionated polysomal RNA from infected cells. The 5′ terminal sequences of mRNAs in R loops, variously located between positions 36 and 92, form complex secondary hybrids with single-stranded DNA from restriction endonuclease fragments containing sequences to the left of position 36 on the Ad2 genome. The structures visualized in the electron microscope show that short sequences coded at map positions 16.6, 19.6 and 26.6 on the R strand are joined to form a leader sequence of 150–200 nucleotides at the 5′ end of many late mRNAs. A late mRNA which maps to the left of position 16.6 shows a different pattern of second site hybridization. It contains sequences from 4.9?6.0 linked directly to those from 9.6?10.9. These findings imply a new mechanism for the biosynthesis of Ad2 mRNA in mammalian cells.  相似文献   

12.
The HpaI E fragment (0-4.5 map units) of adenovirus type 2 (Ad2) DNA was cloned in the plasmid vector pBR322. Excision of the viral insert with PstI and XbaI generated a fragment which comigrated with Ad2 XbaI-E (0-3.8 map units), and this fragment was ligated to the 3.8-100 fragment generated by XbaI cleavage of the DNA of the Ad5 mutant, dl309 (N. Jones and T. Shenk, Cell 17:683-689, 1979). Transfection with the ligation products resulted in the production of progeny virus which was able to replicate on both HeLa and line 293 cells, demonstrating the biological activity of the sequences rescued from the plasmid. Small deletions were introduced around the SmaI site (map position 2.8) within the cloned viral insert, and the altered DNA sequences were reintroduced into progeny virus as described above. The mutant viruses grew well on line 293 cells but plaqued with greatly reduced efficiency on HeLa cells, exhibiting a host range phenotype similar to previously described mutants with lesions located within this region of the genome. When plasmid-derived left-end fragments containing pBR322 DNA sequences to the left of map position 0 were ligated to the 3.8-100 fragment of dl309 DNA, the infectivity of the ligation products was not reduced. However, all progeny viruses examined yielded normal-size restriction enzyme fragments from their left-hand ends, indicating that the bulk of the pBR322 DNA sequences are removed either prior to or as a consequence of the replication of the transfecting DNA molecules.  相似文献   

13.
14.
We have identified a DNA sequence in adenovirus type 16 which contains recognition signals for encapsidation of the viral DNA. The sequence acts in cis to direct the encapsidation of DNA from the end of the viral genome where it is located. The sequence is normally contained in the first 390–400 bp of the left end of the genome. The location was determined by analyzing a series of spontaneous mutants of Ad16 which carried reduplications of 200 to >500 bp of left end sequences at the right end of the genome, thus giving rise to enlarged inverted terminal repetitions (ITR). In plaque-purified (PP) Ad16 prototype virus the subgenomic DNA found in incomplete virus particles exclusively represents left end sequences. When the reduplication mutants were analyzed, we found that a reduplication of about 390 bp enabled subgenomic DNA molecules containing the right end to be encapsidated into incomplete particles as well. A reduplication of about 290 bp, however, did not allow subgenomic DNA containing the right end to be encapsidated. The difference in encapsidation described could not be attributed to an asymetric DNA replication in the mutants, since subgenomic DNA originating from both ends of the genome was produced in equal amounts in the infected cells. We conclude that an essential part of the encapsidation sequence must be located between 290 and 390 bp from the left end of the Ad16 genome.  相似文献   

15.
16.
17.
The complementary strands of fragments of 32P-labelled adenovirus 2 DNA generated by cleavage with restriction endonucleases EcoRI or Hpa1 were separated by electrophoresis. Saturation hybridization reactions were performed between these fragment strands and unlabelled RNA extracted from the cytoplasm of adenovirus 2-transformed rat embryo cells or from human cells early after adenovirus 2 infection. The fraction of each fragment strand complementary to RNA from these sources was measured by chromatography on hydroxylapatite. Maps of the viral DNA sequences complementary to messenger RNA in different lines of transformed cells and early during lytic infection of human cells were constructed.Five lines of adenovirus 2-transformed cells were examined. All contained the same RNA sequences, complementary to about 10% of the light strand of EcoRI fragment A. DNA sequences coding for this RNA were more precisely located using Hpa1 fragments E and C and mapped at the left-hand end of the genome. Thus any viral function expressed in all adenovirus 2-transformed cells, tumour antigen, for example, must be coded by this region of the viral genome. Two lines, F17 and F18, express only these sequences; two others, 8617 and REM, also contain mRNA complementary to about 7% of the heavy strand of the right-hand end of adenovirus 2 DNA; a fifth line, T2C4, contains these and many additional viral RNA sequences in its cytoplasm.The viral RNA sequences found in all lines of transformed cells are also present in the cytoplasm of human cells during the early phase of a lytic adenovirus infection. The additional cytoplasmic sequences in the 8617 and REM cell lines also correspond to “early” RNA sequences.  相似文献   

18.
N D Stow 《Nucleic acids research》1982,10(17):5105-5119
Deletions extending various distances into the left-hand terminal DNA sequences of the adenovirus type 2 (Ad2) genome were generated in a plasmid containing a cloned fragment spanning from 0 to 4.9 map units. The altered Ad2 DNA sequences were introduced into viral genomes by ligating a plasmid-derived fragment, which included the sequences extending to 3.8 map units, to the 3.8-100 map unit fragment generated by XbaI cleavage of the DNA of the Ad5 variant, d1309 (N.Jones and T.Shenk, Cell 17 683-689, 1979). The infectivity of the ligation products was studied by transfection of line 293 cells. Genomes lacking 11, 40, or 51 nucleotides from their left-hand termini, or containing an additional 18dG residues linked to this position were infectious, and analysis of the progeny virus genomes demonstrated that the structure of these modified termini had been restored to normal. In contrast, genomes from which the first 160 base pairs (bp), including the entire 102 bp left hand inverted terminal repeat (ITR), had been removed were non-infectious. The results indicate that the ITRs present at the opposite ends of transfecting DNA molecules are able to interact in vivo, and enable the production of viable viruses containing corrected left-hand terminal sequences. Possible mechanisms for this interaction are discussed.  相似文献   

19.
20.
The nucleotide sequence of the region between map positions 8.0 (HindIII site) and 11.8 (SmaI site) of adenovirus type 5 (Ad5) has been determined. Together with the sequences reported earlier (Van Ormondt et al., 1978; Maat and Van Ormondt, 1979) it encompasses the entire leftmost early region E1 of Ad5 DNA (4126 base pairs). The total sequence revealed a number of potential regulatory signals (promoter sites, ribosome binding sites, 3'-poly(A)-associated sequences), which confirm that region E1 is divided into subregions, E1a and E1b, and a region coding for semi-late viral protein IX. By taking into account the adenovirus 2 (Ad2) RNA-splicing data of Perricaudet et al. (1979; 1980) and the Ad2 RNA mapping data of Chow et al. (1979) we predict that E1a codes for polypeptides of 32, 26 and ca. 13 kd, and subregion E1b for polypeptides of 67 kd and 20 kd; the expected molecular weight of protein IX is 14.4 kd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号