首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the large scale partial sequencing of human heart cDNA clones, a novel clone which is very similar to the rat ribosomal protein L29 in both DNA and amino acid sequences was found. The cDNA encodes a protein with a deduced molecular weight of 17 751 (159 aa). It shows 80.4% homology to protein L29 from the large ribosomal subunit of rat and is related to yeast YL43. The putative protein was named human ribosomal protein L29 (hRPL29). hRPL29 has a large excess of basic residues over acidic ones. The large amount of charged residues makes the protein very hydrophilic and the protein has a deduced pI of 12.16. Internal repeats have been characterised in many ribosomal proteins and a tandem repeat of KAKAKAKA was found to be unique to hRPL29. Analysis of gene organisation by Southern blotting shows that of the approximate 10 copies of hrpL29, all but one are pseudogenes. Northern analysis indicated that the mRNA that encodes human L29 is approx. 800 base pairs in length. An intron of hrpL29 has also been cloned and sequenced by polymerase chain reaction using human genomic DNA as the template.  相似文献   

2.
3.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

4.
《Gene》1999,226(2):339-345
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that recognizes and binds to the nicks and ends of DNA, and catalyses successive ADP-ribosylation reactions. To clarify the function of PARP at the molecular level, we searched proteins which interact with PARP. In the auto-modification domain of PARP in Drosophila, there is a putative leucine-zipper motif which can interact with other protein molecules. To find interacting proteins we examined the auto-modification domain of Drosophila PARP, using the Far-Western screening method. From six independent cDNA clones isolated, we characterized two clones, PBP-3 and PBP-12. The predicted amino acid sequences from 109 to 269 of PBP-3 and from 184 to 312 of PBP-12 had more than 62% identities to mammalian L23a (rpl23a) and L22 (rpl22), the ribosomal proteins of the large subunit. This indicated that PBP-3 and PBP-12 are Drosophila homologues of L23a and L22, respectively. These Drosophila ribosomal protein L22 and L23a have additional Ala-, Lys- and Pro-rich sequences at the amino terminus, which have a resemblance to the carboxy-terminal portion of histone H1. Thus, Drosophila L22 and L23a might have two functions, namely the role of DNA-binding similar to histone H1 and the role of organizing the ribosome.  相似文献   

5.
The yeast ribosome contains three acidic proteins, L44, L44', and L45, closely related from a structural point of view, that seem to play a functional role similar to that of proteins L7 and L12 in the bacterial ribosome. By screening a cDNA bank in lambda gt11 with specific polyclonal and monoclonal antibodies, recombinant phages expressing each one of the acidic proteins have been cloned. A unique copy of each gene is detected using the phage cDNA inserts as probes in nitrocellulose blots of yeast DNA digested with different restriction enzymes. The inserts were subcloned in the plasmid pUC19, and their physical maps and nucleotide sequences were determined. By using the cDNA inserts as probes in genomic DNA banks, DNA fragments carrying the acidic protein genes have been cloned, characterized, and sequenced. The results conclusively show that the three yeast acidic proteins are coded by independent genes and are not the result of a post-translational modification of the product of a unique gene, as in bacteria. Like most ribosomal protein genes, the gene for protein L44' has an intron and two upstream stimulatory boxes (UASrpg) fitting closely to the consensus sequence. The genes coding for proteins L44 and L45 lack introns and seem also exceptional in other characteristics of their sequences. Proteins L44 and L45 have amino acid sequences with about 80% similarity. Protein L44' is only 63% similar to the other two polypeptides. The three proteins have highly conserved carboxyl termini comprising the last 30 amino acids, and the first 10 amino acids of L44 and L45 are identical. The results cast doubts about the possibility of a similar role for the different acidic ribosomal proteins.  相似文献   

6.
Recombinant plasmids containing Xenopus globin mRNA sequences have been constructed using the mRNA:cDNA hybrid conditions of Zain et al. (1979, Cell16, 851–861). The partial nucleotide sequence of two of these recombinants has been determined. They have been identified as containing α- and β-globin-like sequences by homology to other amphibian globin proteins. The nucleotide sequence of these recombinants permits the comparison of conserved regions in both the coding and 3′ nontranslated regions of Xenopus globin mRNAs with the known sequences of other eukaryotic globin proteins and mRNAs. Among the features which have been conserved though evolution is the sequence AAUAAA close to the 3′ terminus of the nontranslated region. Extensive regions of homology occur between the 3′ nontranslated regions of Xenopus α- and β-globin mRNA.  相似文献   

7.
The ribosomal protein genes are present in two to four copies per haploid genome of Xenopus laevis. Using cloned complementary DNA probes, we have isolated, from a genomic library of X. laevis, several clones containing genes for two different ribosomal proteins (L1 and L14). These genes contain intervening sequences. In the case of the L1 gene, the exons are 100 to 200 base-pairs long and the introns, on average, 400 base-pairs. Along the genomic fragments, two different classes of repetitive DNA are present: highly and middle repetitive DNA. Both are evolutionarily unstable as shown by hybridization to Xenopus tropicalis DNA. Several introns of the gene coding for protein L1 contain middle repetitive sequences. Hybridization and hybrid-released translation experiments have shown that sequences inside the two genes hybridize to several poly(A) messenger RNAs. Some of the products encoded by these mRNA have electrophoretic properties of ribosomal proteins.  相似文献   

8.
DNA complementary to mouse yolk sac messenger RNA has been inserted at the PstI site of the plasmid pBR322 by annealing of the oligo(dG)-tailed plasmid DNA with the oligo(dC)-tailed mouse DNA. Transformation of Escherichia coli strain RRI with this annealed DNA yielded clones bearing recombinant plasmids. The clones were screened for DNA complementary to mouse a-fetoprotein (AFP) messenger RNA sequences by hybridization with a cDNA probe transcribed from an AFP mRNA of over 90% purity. Out of nine plasmids that were isolated and analyzed by restriction mapping, all had homologous insert DNA of various lengths. The plasmid with the longest insert, pAF6, contained 1.65 kb of added DNA, which is about 70% of the AFP mRNA. This clone was positively identified by a hybridization-translation procedure to contain a cDNA sequence for AFP. A restriction map of this clone and the orientation of the message are presented.  相似文献   

9.
Unexpected divergence and molecular coevolution in yeast plasmids   总被引:2,自引:0,他引:2  
Four closely related species of yeast possess multicopy nuclear plasmids whose shared molecular architecture demonstrates a common ancestor, despite their lack of discernible DNA sequence homology. Each plasmid encodes three proteins which have equivalent essential functions in plasmid maintenance. These three groups of proteins show markedly different degrees of conservation, so that although we have successfully aligned sequences for two groups, members of the third group have diverged to such an extent that they cannot be aligned. All the proteins are sufficiently different that they function only in conjunction with their encoding plasmid. These proteins have therefore conserved their functional interactions with the relevant DNA sequences of their particular plasmids, despite lack of amino acid sequence conservation. The maintenance of function in the face of DNA sequence divergence is analogous to the coevolution of ribosomal DNA promoters and RNA polymerase I, and suggests that molecular drive may be an important force in the evolution of these plasmids. This view is reinforced by the inconsistent phylogenetic relationships determined from the two alignment sets, and by the contradiction that the two plasmids known to be the closest related taxonomically and by their host interchangeability are suggested to be the most distant by their sequences.  相似文献   

10.
11.
The cloning of all the eleven fragments obtained by degrading the phage lambdarifd18 by the restriction enzyme EcoRI into the plasmid pSF2124 has been achieved: nine of these fragments have been cloned individually, whereas two others have been cloned jointly in the same plasmid. These fragments harbor, in addition of lambda genes, the genes for ribosomal proteins, the elongation factor Tu, the beta and beta' subunits of RNA polymerase and the ribosomal RNAs. The clones carrying the ribosomal RNA genes have been constructed to provide convenient plasmids to determine the primary structure of ribosomal RNAs. Some further genetic manipulations in vitro have been performed on two of them to remove extraneous non-ribosomal RNA gene sequences; the ribosomal genes purified this way have been subcloned into the plasmid pBR322. Other clones of interest have been obtained which carry the genes for the elongation factor Tu, a number of 50-S ribosomal proteins and the beta subunit of RNA polymerase.  相似文献   

12.
The amino acid sequences of rat ribosomal proteins L27a and L28 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed from the NH2-terminal amino acid sequences of the proteins. L27a contains 147 amino acids (the NH2-terminal methionine is removed after translation of the mRNA) and has a molecular weight of 16 476. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 18-22 copies of the L27a gene. The mRNA for the protein is about 600 nucleotides in length. L27a is homologous to mouse L27a (there are 3 amino acid changes) and to yeast L29. Rat ribosomal protein L28 has 136 amino acids (its NH2-terminal methionine is also processed after translation) and has a molecular weight of 15 707. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 9 or 10 copies of the L28 gene. The mRNA for the protein is about 640 nucleotides in length. L28 contains a possible internal duplication of 9 residues. Corrections are recorded in the sequences reported before for rat ribosomal proteins S4 and S12.  相似文献   

13.
The arrangement of the DNA sequences coding for the ribosomal 5.8 S RNA in the genome of Xenopus laevis has been studied. In Xenopus the 5.8 S cistrons, like the ribosomal 28 S and 18 S cistrons, are reiterated some 600-fold (Clarkson et al., 1973a). When banded in caesium chloride, the 5.8 S cistrons separate from somatic DNA of high molecular weight and band as a distinct satellite, indicating a clustered arrangement in the genome. The buoyant density of this satellite (1.723 g cm?3) corresponds to that of the ribosomal DNA satellite.It has previously been shown that the ribosomal DNA sequences have been deleted from the genome of the anucleotide Xenopus mutant. Our findings, first that the anucleolate mutant does not synthesize 5.8 S RNA and second that somatic DNA from this mutant does not detectably hybridize with 5.8 S RNA, demonstrate that the 5.8 S cistronic complement has been similarly deleted. This finding supports our contention that 5.8 S sequences are clustered on chromosomal DNA and further suggests that they are located close to or within the rDNA complements in the nucleolus organizer region.Pre-hybridization to saturation with unlabelled 5.8 S RNA results in only a slight increase in the buoyant density of denatured 5.8 S coding sequences from low molecular weight DNA. Since a contiguous arrangement of the 5.8 S sequences would give rise to a much larger increase in density, it follows that, although clustered, the sequences must be intercalated within stretches of other DNA. By contrast, pre-hybridization of the somatic DNA with unlabelled 28 S or 18 S ribosomal RNAs results in large shifts in the buoyant density of the 5.8 S sequences. These shifts indicate that the 5.8 S sequences are closely linked to both 28 S and 18 S coding sequences.It is concluded that the 5.8 S cistrons are interspersed along the ribosomal DNA sense strand and that each is located together with a 28 S and an 18 S cistron in a ribosomal repeat unit. Estimates, obtained from the pre-hybridization experiments, of the separations between the 5.8 S and the 28 S and 18 S sequences, are combined in a model of the ribosomal repeat unit. In this model the 5.8 S cistron is located within the transcribed spacer which links the 28 S and 18 S coding sequences.  相似文献   

14.
Zinc finger-like motifs in rat ribosomal proteins S27 and S29.   总被引:5,自引:1,他引:4       下载免费PDF全文
The primary structures of the rat 40S ribosomal subunit proteins S27 and S29 were deduced from the sequences of nucleotides in recombinant cDNAs and confirmed by determination of amino acid sequences in the proteins. Ribosomal protein S27 has 83 amino acids and the molecular weight is 9,339. Hybridization of cDNA to digests of nuclear DNA suggests that there are 4-6 copies of the S27 gene; the mRNA for the protein is about 620 nucleotides in length. Ribosomal protein S29 has 55 amino acids and the molecular weight is 6,541. There are 14-17 copies of the S29 gene and its mRNA is about 500 nucleotides in length. Rat ribosomal protein S29 is related to several members of the archaebacterial and eubacterial S14 family of ribosomal proteins. S27 and S29 have zinc finger-like motifs as do other proteins from eukaryotic, archaebacterial, eubacterial, and mitochondrial ribosomes. Moreover, ribosomes and ribosomal subunits appear to contain zinc and iron as well.  相似文献   

15.
Isolation and Characterization of Bacterial Ribosomal RNA Cistrons   总被引:23,自引:0,他引:23       下载免费PDF全文
The DNA sequences which code for ribosomal DNA have been isolated and purified. The technique used has general application for RNA:DNA hybridization studies and enables the isolation of any gene for which sufficient gene product can be obtained. Experiments with isolated ribosomal RNA cistrons demonstrated that (a) the majority of the ribosomal cistrons are similar to one another; (b) the cistrons which are similar to one another are virtually identical to one another; (c) ribosomal cistrons of different bacterial species are closely related to one another.  相似文献   

16.
J L Woolford  L M Hereford  M Rosbash 《Cell》1979,18(4):1247-1259
Yeast mRNA enriched for ribosomal protein mRNA was obtained by isolating poly(A)+ small mRNA from small polysomes. A comparison of cell-free translation of this small mRNA and total mRNA, and electrophoresis of the products on two-dimensional gels which resolve most yeast ribosomal proteins, demonstrated that a 5-10 fold enrichment for ribosomal protein mRNA was obtained. One hundred different recombinant DNA molecules possibly containing ribosomal protein genes were selected by differential colony hybridization of this enriched mRNA and unfractionated mRNA to a bank of yeast pMB9 hybrid plasmids. After screening twenty-five of these candidates, five different clones were found which contain yeast ribosomal protein gene sequences. The yeast mRNAs complementary to these five plasmids code for 35S-methionine-labeled polypeptides which co-migrate on two-dimensional gels with yeast ribosomal proteins. Consistent with previous studies on ribosomal protein mRNAs, the amounts of mRNA complementary to three of these cloned genes are controlled by the RNA2 locus. Although two of the five clones contain more than one yeast gene, none contain more than one identifiable ribosomal protein gene. Thus there is no evidence for "tight" linkage of yeast ribosomal protein genes. Two of the cloned ribosomal protein genes are single-copy genes, whereas two other cloned sequences contain two different copies of the same ribosomal protein gene. The fifth plasmid contains sequences which are repeated in the yeast genome, but it is not known whether any or all of the ribosomal protein gene on this clone contains repetitive DNA.  相似文献   

17.
18.
Recombinant plasmids have been constructed with contain sequences complementary to the mRNA coding for skeletal muscle alpha-tropomyosin. These recombinants were detected initially using a selective cDNA probe and subsequently using a messenger RNA selection assay. alpha-TM plasmids hybridize to a singly mRNA species smaller than 18S ribosomal RNA and found only in skeletal muscle. Cross-hybridization with mRNA's coding for other tropomyosins could not be detected under normal conditions. However, under conditions of reduced stringency alpha- TM plasmids cross-hydridize with an RNA species in heart muscle which may code for cardiac tropomyosin.  相似文献   

19.
The nucleotide sequence running from the genetic left end of bacteriophage T7 DNA to within the coding sequence of gene 4 is given, except for the internal coding sequence for the gene 1 protein, which has been determined elsewhere. The sequence presented contains nucleotides 1 to 3342 and 5654 to 12,100 of the approximately 40,000 base-pairs of T7 DNA. This sequence includes: the three strong early promoters and the termination site for Escherichia coli RNA polymerase: eight promoter sites for T7 RNA polymerase; six RNAase III cleavage sites; the primary origin of replication of T7 DNA; the complete coding sequences for 13 previously known T7 proteins, including the anti-restriction protein, protein kinase, DNA ligase, the gene 2 inhibitor of E. coli RNA polymerase, single-strand DNA binding protein, the gene 3 endonuclease, and lysozyme (which is actually an N-acetylmuramyl-l-alanine amidase); the complete coding sequences for eight potential new T7-coded proteins; and two apparently independent initiation sites that produce overlapping polypeptide chains of gene 4 primase. More than 86% of the first 12,100 base-pairs of T7 DNA appear to be devoted to specifying amino acid sequences for T7 proteins, and the arrangement of coding sequences and other genetic elements is very efficient. There is little overlap between coding sequences for different proteins, but junctions between adjacent coding sequences are typically close, the termination codon for one protein often overlapping the initiation codon for the next. For almost half of the potential T7 proteins, the sequence in the messenger RNA that can interact with 16 S ribosomal RNA in initiation of protein synthesis is part of the coding sequence for the preceding protein. The longest non-coding region, about 900 base-pairs, is at the left end of the DNA. The right half of this region contains the strong early promoters for E. coli RNA polymerase and the first RNAase III cleavage site. The left end contains the terminal repetition (nucleotides 1 to 160), followed by a striking array of repeated sequences (nucleotides 175 to 340) that might have some role in packaging the DNA into phage particles, and an A · T-rich region (nucleotides 356 to 492) that contains a promoter for T7 RNA polymerase, and which might function as a replication origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号