首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was undertaken to examine the effect of different amounts of dietary lysine (13 and 21 g kg?1 diet), lipid (80 and 160 g kg?1 diet) and L ‐carnitine (0.2 and 1.0 g kg?1 diet) on growth performance, proximate composition and amino acid metabolism of the African catfish (Clarias gariepinus). Juvenile African catfish (23 ± 1.5 g/fish) were stocked into 70‐L aquaria (16 aquaria, 28 fish/aquarium) connected to a recirculation system during a maximum period of 74 days. All groups were fed at a level of 24 g kg?0.8 day?1 in an experiment run at pair feeding. Animals receiving 1.0 g carnitine accumulated up to six times more carnitine in their tissues than animals receiving 0.2 g (P < 0.05). Acyl‐carnitine and free L ‐carnitine levels increased in the whole body and in tissues. Dietary L ‐carnitine supplements increased protein‐to‐fat ratios in the body, but did not affect growth rate. Protein‐to‐fat ratios were only affected when the biosynthesis capacity of L ‐carnitine was restricted due to low lysine levels and when there was a shortage of dietary fat. When lysine was offered at 21 g kg?1 feed, dietary L ‐carnitine supplements did not affect the amino acid concentrations of body tissues. Dietary L ‐carnitine supplements raised the concentration of glutamic acid > aspartic acid > glycine > alanine > arginine > serine > threonine in skeletal muscle tissue (P < 0.05). Total amino acid concentration in muscle and liver tissues (dry‐matter basis) increased from 506 to 564 and from 138 to 166 mg g?1, respectively, when diets were offered with high L ‐carnitine, low lysine and low fat levels. These data suggest that dietary L ‐carnitine supplementation may increase fatty acid oxidation and possibly decrease amino acid combustion for energy.  相似文献   

2.
The effects of dietary l ‐carnitine on growth performance, whole body composition and feed utilization were studied in beluga, Huso huso. Fish were randomly allocated in 15 tanks (30 fish per tank) and triplicate groups were fed to satiety during 84 days one of five isonitrogenous (41% CP) and isoenergetic (20 MJ kg?1) diets, each differing in l ‐carnitine content [0 (control), 300, 600, 900 and 1200 mg kg?1 diet]. At the end of the trial, fish grew from 19‐ to 23‐fold in weight, from 8.4 g to a maximum of 191 g. Fish fed 300–600 mg l ‐carnitine had the highest specific growth rate (SGR, 3.69 and 3.72% day?1) and protein efficiency ratio (PER, 0.95 and 0.99), and the lowest feed conversion ratio (FCR, 1.4 and 1.3) than the other groups (P < 0.0001). SGR, PER and FCR were the poorest for fish fed 1200 mg l ‐carnitine, while fish fed the unsupplemented and 900 mg l ‐carnitine supplemented diet showed intermediate performance. Body lipid concentration decreased significantly from 5.8 to 5.1% (P < 0.0001) with dietary l ‐carnitine supplementation increasing from 0 to 300 mg. Energy content was significantly lower in fish fed the 900 and 1200 mg l ‐carnitine diet (5.8 MJ kg?1), when compared with the other treatment groups (6.4–6.6 MJ kg?1). The results indicated that feeding sturgeon on diets supplemented with 300 mg l ‐carnitine kg?1 diet improved growth performance, and stimulated protein‐sparing effects from lipids.  相似文献   

3.
Fish silage was manufactured by the addition of formic acid (85% solution) to whole mackerel at a rate of 35 g kg−1 [wet weight (ww)]. During 112 days of storage, the peroxide value of the silage declined from 164.3 meq O2 kg−1 oil on Day 1 to 55.0 meq O2 kg−1 oil by Day 42 and thereafter remained stable; microbial activity persisted at 10 colonies g−1 silage ww. Four diets of similar crude protein, digestible energy and mineral concentrations were formulated with 0, 50, 100 or 150 g fish silage kg−1 diet dry matter (DM). The diets were given to 72 Landrace × (Landrace × Large White) pigs (boars, gilts and castrated males) from 25 kg to slaughter at 55 kg.Animals on fish silage diets grew faster than those given no fish silage owing to an improved food conversion ratio (FCR); 100 g fish silage kg−1 diet DM effected best performance (daily liveweight gain, 725 g; FCR, 1.96). Carcass measurements did not vary between dietary treatments. Soft, yellow fat was observed in carcasses from pigs given 150 g silage kg−1 diet DM. Growth rates were similar between sexes; boars and gilts had less backfat than castrated males.  相似文献   

4.
A 10-week feeding trial was conducted to study the effect of feeding level and dietary lysine concentration on growth, protein and lysine retention, and body composition in juvenile turbot. Maintenance requirement for lysine and the efficiency of lysine utilisation were determined as well. Two experimental diets were formulated based on fishmeal or wheat gluten as main protein sources, containing 6.4 g (Diet A, control) and 4.5 g lysine per 100 g CP (Diet B), respectively. Diets were fed once daily at six feeding levels (per day 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% of body weight [BW] and ad libitum) to a total of 432 fish of 48 g initial BW. No differences in the growth parameters were observed between diets at the same feeding level, except a lower feed to gain ratio (p < 0.05) at the highest feeding level at Diet B. Whole-body composition was not affected by diet, whereas muscle protein concentration was significantly lower for fish fed Diet B. Amino acid concentration in whole-body protein was affected by dietary treatment and fish fed Diet B showed lower concentrations of all essential amino acids. In fish muscle protein, lysine, methionine, leucine, isoleucine, and valine concentrations were significantly lower in Diet B. Efficiency of lysine utilisation for growth (klys) was determined by linear regression analysis and amounted for 0.69 for Diet B. The maintenance lysine requirement defined at zero lysine retention was 6.5 mg · kg?0.8 · d?1. Lysine intakes at zero protein retention were 13.0 mg and 12.9 mg · kg?0.8 · d?1 for Diet A and B, respectively. Growth and nutrient retention were similar for both diets and, therefore, a lysine deficiency in Diet B did not occur. In conclusion, a proportion of 330 g wheat gluten per kg feed did not influence growth performance and maintenance requirement for lysine in juvenile turbot. However, the effect of diet composition on the amino acid profile of body protein might be relevant for the derivation of the amino acid requirement from protein retention.  相似文献   

5.
Two separate experiments were conducted to determine the dietary requirements of juvenile Asian sea bass Lates calcarifer Bloch for lysine and arginine. Fish (average initial weight: lysine experiment, 13.12 ± 0.12 g; arginine experiment, 2.56 ± 0.13 g) were given amino acid test diets for 12 weeks containing fish meal, zein, squid meal, and crystalline amino acids. Each set of isonitrogenous and isocaloric test diets contained graded levels of L ‐lysine or L ‐arginine. The feeding rate in the lysine experiment was at 4–2.5% of the body weight day?1, while in the arginine experiment it was at 10–4% of the body weight day?1. The fish (20 per tank, lysine experiment; 15 per tank, arginine experiment) were reared in 500‐L fibreglass tanks with continuous flowthrough sea water at 27 °C and salinity of 31 ppt in the lysine experiment and at 29 °C and salinity of 29 ppt in the arginine experiment. The experiments were in a completely randomized design with two replicates per treatment. Survival was high in fish given adequate lysine or arginine. Mean percentage weight gains were significantly different in fish fed varying levels of lysine or arginine. Fish fed high levels of L ‐arginine suffered high mortalities. No significant differences were obtained in the feed efficiency ratios (FER, g gain g?1 feed) of fish fed graded lysine, although the values tended to increase as the dietary lysine level was increased up to the requirement level. In contrast, in the arginine experiment, significant differences in FER of fish among treatments were obtained; the highest FER was observed in fish fed the diet containing an optimum arginine level. On the basis of the growth response, survival, and FER, the lysine and arginine requirements of juvenile Asian sea bass were estimated to be 20.6 g kg?1 dry diet (4.5% protein) and 18.2 g kg?1 dry diet (3.8% protein), respectively. These data will be useful in the further refinement of practical diet formulations for the Asian sea bass.  相似文献   

6.
Growth performance, carcass quality, survival and hematological responses of Oncorhynchus mykiss juveniles (initial weight 8.4 ± 0.1 g) fed diets containing thymol‐carvacrol powder at the levels of 0, 1.0, 2.0, 3.0 g kg?1 were tested. Thymol‐carvacrol powder originated from Origanum vulgare, a Mediterranean plant, added to diets. Each diet was fed to triplicate groups of fish for 45 days. Fish fed diets containing thymol‐carvacrol had significantly higher final weight and growth than the control group. Food conversion ratio in fish fed diets containing 2.0 and 3.0 g kg?1 thymol‐carvacrol was statistically better than in other treatments. Survival was not different among all treatments. The number of lymphocytes increased when thymol‐carvacrol was used at higher levels. Furthermore, whole body lipid content was higher in fish fed 1.0 and 2.0 g kg?1 thymol‐carvacrol than the other groups, but body protein in the group fed 3.0 g kg?1 was higher than in other groups. Also, body ash in control and 1.0 g kg?1 was higher than in other groups. Whole body dry matter was not affected by dietary treatments. These results indicated that dietary administration of thymol‐carvacrol can influence some growth, hematological parameters and tissue composition in rainbow trout juveniles.  相似文献   

7.
A digestibility and balance trial was carried out to study the nutrient digestibility and utilisation of protein and energy in wet distillers' solids derived from barley or soyabean meal. Eight growing pigs (30–72 kg liveweight) were used in an 8 × 6 cyclic change-over experimental design, in which eight experimental diets were arranged 2 × 2 × 2 factorially. The corresponding factors were the protein source (wet distillers' solids (DS) or soyabean meal (SBM)), protein supply (130 or 162 g crude protein (CP) kg−1 dry matter (DM)) and liquid lysine product supplementation.DS and SBM contained 565 g and 485 g CP kg−1 DM, respectively, and the respective lysine contents in CP were 39 g and 64 g per 160 g N. The liquid lysine product contained 527 g CP kg−1 DM and lysine in CP 193 g per 160 g N.No differences were found in the total tract digestibility of the nutrients or energy among diets composed of DS or SBM without lysine supplementation. Those diets with liquid lysine product supplementation, however, had opposite effects on the digestibility of the diets composed of the different protein sources. Lysine supplementation improved the digestibility of ash (P < 0.001), ether extract (P < 0.05) and crude carbohydrates (CCH) (P < 0.05) in diets composed of DS and adversely impaired the digestibility of organic matter and CCH (P < 0.05) in diets composed of SBM. The calculated digestibility of CP and gross energy were respectively 91.2% and 88.3% in SBM and 90.2% and 85.0% in DS. The digestible and calculated net energy contents were respectively 18.16 MJ kg−1 DM and 10.73 MJ kg−1 DM for SBM and 19.31 MJ kg−1 DM and 10.40 MJ kg−1 DM for DS.The pigs on the diets composed of DS had higher total (P < 0.001) and urea (P < 0.01) nitrogen (N) excretion in urine and lower daily retention of N (P < 0.001) than the pigs on the diets composed of SBM. The liquid lysine product supplementation of the diets decreased the total and urea N excretion in urine (P < 0.001) and improved the daily N retention (P < 0.001). With lysine supplementation, the protein utilisation of the diets composed of DS was improved to the level of the diets composed of SBM. No differences were observed in the utilisation of energy among the diets composed of different protein sources.It is concluded that DS is highly digestible, but its protein is efficiently utilised only with lysine supplementation.  相似文献   

8.
This study evaluated the growth performance and body composition of Oreochromis niloticus fingerlings (average initial weight 16.53 ± 0.44 g) fed 9 experimental diets (A, B, C, D, E, F, G, H and I) containing three different levels of protein (26, 31 and 36 g 100 g?1) at three different gross energy (GE) levels (16, 19 and 22 MJ kg?1) for a period of 64 days. Significant differences were observed in the feed consumption, body weight gain, specific growth rate (SGR), condition factor (k), feed conversion ratio (FCR), protein efficiency ratio (PER), net protein retention (NPR) and apparent net energy retention (ANER) values of fish when the energy level of diet was increased at different protein levels. The maximum weight gain, SGR and k were observed on diet F containing 36% protein and an energy level of 19 MJ kg?1 of dry feed with a protein to energy (P/E) ratio of 18.96 (g protein MJ?1 GE). A further increase in the energy content of the diet (22 MJ kg?1) at the same protein level (Diet I) did not produce any improvement in the growth performance. Lowering the energy level at the same protein level significantly affected the growth performance. Fish fed diet B containing 31% protein and a lower energy level of 16 MJ kg?1 with the same P/E ratio of 18.61 as diet F showed significantly lower weight gain and growth performance than diet F. Diets E and H containing 31% crude protein at all three energy levels produced similar results as diet B. The poorest FCR was observed when the diet contained both lower levels of protein and energy. Fish fed diet G, containing 26% protein at high energy level (22 MJ kg?1), showed the best PER and NPR values. The PER and NPR were the poorest on diet C containing 36% protein at low energy level (16 MJ kg?1). The body moisture content at all protein levels decreased (P < 0.05) with the increasing level of dietary energy whereas the body fat content increased (P < 0.05). Similar trends were observed in the body ash and energy content. Increasing the dietary energy content at lower protein levels did not show any difference (P > 0.05) in body protein content. Our results indicated the optimum P/E ratio for O. niloticus as 18.96 g protein per mega joule of gross energy at 36% dietary protein level and a dietary gross energy value of 19 MJ kg?1.  相似文献   

9.
An 8-week feeding trial was conducted to determine the dietary copper (Cu) on growth performance and immune responses of juvenile Chinese mitten crab Eriocheir sinensis. Six semi-purified diets with six copper levels (1.88, 11.85, 20.78, 40.34, 79.56 and 381.2 mg kg?1 diet) of CuSO4·5H2O were fed to E. sinensis (0.45 ± 0.01 g). Each diet was fed to the crab in five replicates. The crab fed diets with 20.78 and 40.34 mg Cu kg?1 diet had significantly greater weight gain and hemolymph oxyhemocyanin content than those fed diets with 1.88 and 381.2 mg Cu kg?1 diet. Survival rates of crab were not significantly different between all treatment groups. The activities of copper–zinc superoxide dismutase (Cu–Zn SOD), phenoloxidase (PO), and total hemocyte count (THC) significantly increased when the supplementation of dietary copper reached 20.78–40.34 mg Cu kg?1 diets. In the bacteria challenge experiment with Aeromonas hydrophila, survival rates significantly increased and reached a plateau when the dietary copper increased from 1.88 to 40.34 mg kg?1, whereas significantly decreased when the dietary copper increased from 40.34 to 381.2 mg kg?1. This study indicates that the level of dietary copper is important in regulating growth and immune response in crab.  相似文献   

10.
Two experiments involving 144 Yorkshire × Lacombe gilts, with an average initial weight of 20 kg, were conducted. In Experiment 1 the gilts were allotted to a control diet containing soya bean meal (SBM) or to diets in which either 50% or all of the supplementary protein was provided by Tower rapeseed meal (RSM). In the second experiment the two diets had either SBM or Tower RSM as the supplementary protein source. In a third diet Tower RSM was supplemented with sufficient lysine to equal the calculated available lysine level of the SBM control diet. In Experiment 1, gilts given the SBM diet grew from 20 to 60 kg significantly faster (P<0.01), and had better feed conversion efficiency (P<0.01), than those given the RSM diets. A 50% replacement of SBM by Tower RSM gave intermediate results. Partial or total replacement of SBM by Tower did not significantly affect the growth rate or feed conversion efficiency of the gilts when growing from 60 to 100 kg liveweight. Serum triiodothyronine (T3) and thyroxine (T4) concentrations of the gilts at 100 kg were lower in pigs fed on the RSM diets but the differences were not significant. In the second experiment, total replacement of SBM by Tower RSM, with or without the addition of lysine, significantly (P<0.001) reduced growth rate and feed conversion efficiency during the growing period (20–60 kg) but did not significantly affect performance during the finishing period (60–90 kg). Serum T3 concentration was not significantly affected by the addition of Tower RSM to the diet but T4 concentrations were significantly reduced (P<0.01). None of the carcass parameters studied were significantly affected by the addition of Tower RSM to the diets.  相似文献   

11.
12.
The objective of this study was to evaluate the effect of supplementing a CP-reduced diet with rumen-protected methionine on growth performance of Fleckvieh bulls. A total of 69 bulls (367 ± 25 kg BW) were assigned to three feeding groups (n = 23 per group). The control (CON) diet contained 13.7% CP and 2.11 g methionine/kg diet (both DM basis) and was set as positive control. The diet reduced in CP (nitrogen) (RED) diet as negative control and the experimental RED + rumen-protected methionine (MET) diet were characterised by deficient CP concentrations (both 9.04% CP). The RED + MET diet differed from the RED diet in methionine concentration (2.54 g/kg DM vs. 1.56 g/kg DM, respectively) due to supplementation of rumen-protected methionine. Rumen-protected lysine was added to both RED and RED + MET at 2.7 g/kg DM to ensure a sufficient lysine supply relative to total and metabolisable protein intake. Metabolisable energy (ME) and nutrient composition were similar for CON, RED, and RED + MET. Bulls were fed for 105 days (d) on average. Individual feed intake was recorded daily; individual BW was recorded at the beginning of the experiment, once per month, and directly before slaughter. At slaughter, blood samples were collected and carcass traits were assessed. Reduction in dietary CP concentration reduced feed intake, and in combination with lower dietary CP concentration, daily intake of CP for RED and RED + MET was lower compared with CON (P < 0.01). Daily ME intake was reduced in RED and RED + MET compared with CON (P < 0.01). Consequently growth performance and carcass weights were reduced (both P < 0.01) in both RED and RED + MET compared with CON. Supplemental rumen-protected methionine was reflected in increased serum methionine concentration in RED + MET (P < 0.05) as compared to RED but it did not affect growth performance, carcass traits and serum amino acid (AA) concentrations, except for lysine which was reduced (P < 0.01) compared to CON and RED. In conclusion, bulls fed RED or RED + MET diets were exposed to a ruminal CP deficit and subsequently a deficit of prececal digestible protein, but methionine did not appear to be the first-limiting essential AA for growth under the respective experimental conditions.  相似文献   

13.
Two 8‐week growth trials were conducted to determine total aromatic amino acid requirement and tyrosine replacement value for phenylalanine in Cirrhinus mrigala fingerlings. To determine the phenylalanine requirement, 20 fish were randomly stocked in triplicate groups in 55‐L indoor polyvinyl flow‐through circular tanks and fed six experimental diets containing graded levels of phenylalanine (5.0, 7.5, 10.0, 12.5, 15.0 and 17.5 g kg?1, dry diet) with 10 g kg?1 tyrosine. Maximum weight gain (287%), best FCR (1.44) and PER (1.74) occurred at 12.5 g kg?1 dietary phenylalanine. Quadratic regression analysis of weight gain, FCR and PER data indicated phenylalanine requirement at 13.5, 12.9 and 12.7 g kg?1 of dry diet, respectively. Protein deposition was significantly (P < 0.05) higher at 12.5 g kg?1 dietary phenylalanine. Based on the above results, phenylalanine requirement of C. mrigala is recommended at 13.0 g kg?1 of dry diet, corresponding to 32.5 g kg?1 of protein. On the basis of the above requirement, a second experiment with a similar design was conducted using six diets containing graded levels of tyrosine (2.1, 4.0, 6.0, 8.0, 10.0 and 12.0 g kg?1) with 13.0 g kg?1 phenylalanine fixed in all diets to determine the phenylalanine replacement value with that of tyrosine. Maximum weight gain (315%), best FCR (1.47) and PER (1.69) was at 8.0 g kg?1 dietary tyrosine. Quadratic regression analysis of weight gain, FCR and PER data indicated tyrosine requirement at 9.0, 8.4 and 8.2 g kg?1 of dry diet, respectively. Protein deposition was significantly (P < 0.05) higher at 8.0 g kg?1 dietary tyrosine. On the basis of the above results, 8.5 g kg?1 tyrosine, corresponding to 21.3 g kg?1 of protein, is taken as the optimum requirement and the replacement value is 39.53% on a weight and 36% on a molar basis. Thus, the total aromatic amino acid requirement is 21.5 g kg?1 of diet, corresponding to 53.8 g kg?1 of protein for optimum C. mrigala growth.  相似文献   

14.
The present experiment was conducted to determine the dietary vitamin A requirement of juvenile Amur sturgeon (Acipenser schrenckii) by formulating seven semipurified diets containing 10, 258, 510, 1050, 2020, 4100 and 8300 IU vitamin A (as retinol acetate) kg?1 diet, respectively. Each experimental diet was fed to triplicate groups of 20 juveniles each with initial average weights of 12.09 ± 0.22 g in 405‐L aquaria and maintained at 25.0 ± 2.0°C for 8 weeks. Fish fed the basal diet (10 IU vitamin A kg?1 diet) exhibited poor appetite and activity, whereas these signs were not observed in any group fed vitamin A‐supplemented diets. Weight gain, feed efficiency and hepatosomatic index increased significantly with increases in the dietary vitamin A level, reaching a peak with the vitamin A 1050 IU kg?1 diet, and then decreasing. Muscle chemical compositions were not affected by the dietary vitamin A levels. Vitamin A concentrations in liver and muscle increased significantly as the vitamin A levels increased within a range of 10~4100 IU kg?1 diet; above this level there were no significant changes. Broken‐line regression analysis of weight gain and liver vitamin A concentration against the dietary vitamin A level showed that juvenile Amur sturgeon required a minimum of 923 IU vitamin A kg?1 in the diet for maximal growth, and 1981 IU kg?1 for highest liver vitamin A accumulation.  相似文献   

15.
Abstract

This experiment investigates the effect of increasing the dietary content of bacterial protein meal (BPM) on the protein and energy metabolism, and carcass chemical composition of growing chickens. Seventy-two Ross male chickens were allocated to four diets, each in three replicates with 0% (D0), 2% (D2), 4% (D4), and 6% BPM (D6), BPM providing up to 20% of total dietary N. Five balance experiments were conducted when the chickens were 3 – 7, 10 – 14, 17 – 21, 23 – 27, and 30 – 34 days old. During the same periods, 22-h respiration experiments (indirect calorimetry) were performed with groups of 6 chickens (period 1), 5 chickens (period 2), and one chicken (periods 3 – 5). After each balance period, one chicken in each cage was killed and the carcass weight was recorded. Chemical analyses were performed on the carcasses from periods 1, 3, and 5. Weight gain, feed intake, and feed conversion rate were found to be similar for all diets. Chickens on D0 retained 1.59 g N · kg?0.75 · d?1, significantly more than chickens on D2, D4, and D6, which retained 1.44 g, 1.52 g, and 1.50 g N · kg?0.75 · d?1, respectively. This was probably caused by the higher nitrogen content of D0. Neither the HE (p = 0.92) nor the retention of energy (p = 0.88) were affected by diet. Carcass composition was similar between diets, in line with the values for protein and energy retention found in the balance and respiration experiments. It was concluded that the overall protein and energy metabolism as well as carcass composition were not influenced by a dietary content of up to 6% BPM corresponding to 20% of dietary N.  相似文献   

16.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   

17.
This study investigated the effects of elevated dietary levels of vitamin E (α‐tocopherol) on growth performance, proximate composition and fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Three semi‐purified experimental diets were formulated to contain 49% protein and 16% lipid. High docosahexaenoic acid (DHA) tuna oil was added to the diets to supplement DHA. A graded level of vitamin E (0‐, 50‐, and 100 mg kg?1) was added to experimental diets 1 to 3, respectively. Analyzed vit. E levels were 155.2, 195.3 and 236.4 mg kg?1 in diets 1, 2 and 3, respectively. The experiment was conducted for 12 weeks with juvenile silver pomfret (29.6 ± 7.6 g) using a flow‐through system consisting of nine 1‐m3 tanks. Each treatment had three replicates and fish were stocked at the rate of 20 m?3. Growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (P < 0.05) higher than in fish fed diet 1, but the parameters in diets 2 and 3 did not differ significantly (P > 0.05). Although whole body protein levels were not influenced by the dietary vit. E levels, whole body lipid in fish fed diet 2 was significantly higher than in fish fed the other diets. The whole body vit. E levels in fish fed diet 2 (22.6 mg kg?1) and diet 3 (24.1 mg kg?1) were significantly (P < 0.05) higher than in those fed diet 1 (18.2 mg kg?1). Whole body total saturated fatty acids were significantly lower, and DHA levels higher in fish fed diets 2 and 3 than those fed diet 1. The results of the present study suggest that increasing dietary supplementation of vit. E in high lipid diets enhances the growth performance of fish and that a dietary level of 196 mg kg?1 vit. E is suitable for the growth of silver pomfret.  相似文献   

18.
Twenty-four sows were used to study the effects of dietary protein restriction during pregnancy and exogenous porcine prolactin (pPRL) during late pregnancy and throughout lactation on lactation performance. Eight sows were given a protein-adequate diet containing 179 g crude protein (CP)kg−1 during their first pregnancy while the remaining 16 sows received the same amount of a diet containing 80 g CP kg−1. Eight of the sows given 80 g CP kg−1 during pregnancy were injected with 15 mg pPRL i.m. twice daily at 08:00 and 20:00 between day (d) 102.1 (±0.3) of pregnancy and weaning after their first lactation. Pregnant sows offered the low protein diet gained significantly less body weight during gestation and tended to eat less in the subsequent lactation than sows given the protein-adequate diet. Dietary protein had no significant effect on birth weight, milk yield, milk composition or growth rate of the litter during lactation. Neither dietary protein intake during pregnancy nor exogenous prolactin affected the concentrations of plasma glucose, serum insulin, urea or non-esterified fatty acid (NEFA) during lactation. The concentration of lactose in plasma during lactation was unaffected by treatment, but at d 105 of pregnancy, plasma lactose levels were greater in sows which had received exogenous prolactin (32.4 vs. 6.2 mg l−1, P < 0.05). The concentrations of RNA and DNA in mammary tissue biopsies were unaffected by either dietary protein or pPRL. The concentration of RNA and DNA increased between d 70 and 90 from 0.66 to 2.77 mg g−1 and from 0.54 to 1.19 mg g−1, respectively. Thereafter, RNA increased to 4.40 mg g−1 at d 14 of lactation whilst DNA concentration remained at a similar level of 0.90 mg g−1.Milk yield of sows between d 5 and 8 and between d 19 and 22 of lactation was reduced from 8.36 to 7.00 kg day−1 and from 10.74 to 8.22 kg day−1, respectively, in sows given pPRL. The protein content of colostrum from sows treated with pPRL was reduced from 164 to 104 g kg−1 whereas the fat content increased from 47 to 127 g kg−1. These results indicate that the administration of exogenous pPRL during late pregnancy and throughout lactation initiated lactogenesis prematurely and reduced subsequent milk yield during established lactation.  相似文献   

19.
Two experiments in a 2?×?2 factorial arrangement were conducted to evaluate the effect of crude protein (CP) (130 vs. 200 g/kg) and phosphorus (P) (4.0 vs. 6.0 g total P/kg) level in a phytase supplemented diet (500 FTU [phytase units]/kg) in grower-finisher pigs. Owing to the design of the experiment, as dietary P level increased, there was also an increase in dietary calcium (Ca) level in order to maintain a dietary Ca to P ratio of 1.6:1. In Experiment 1, four diets were fed to 56 pigs (n?=?14, initial body weight [BW] 36.7?±?4.2 kg) to investigate the interaction between CP and P on growth performance, bone mineralisation and digesta pH. Experiment 2 consisted of 16 entire male pigs (n?=?4; offered identical diets to that offered in Experiment 1) for the determination of total tract apparent digestibility and nitrogen (N), P and Ca utilisation. There was an interaction between CP and P level on bone ash, bone P and bone Ca concentrations (p?<?0.05). Pigs offered low CP–low P diets had a higher bone ash, P and Ca concentrations than pigs offered high CP–low P diets. However, there was no effect of CP level at high P levels on bone ash, P and Ca concentrations. Pigs offered low P diets had a lower ileal pH compared with pigs offered high P diets (p?<?0.05). In conclusion, offering pigs a high CP–low P, phytase-supplemented diet resulted in a decrease in bone mineralisation.  相似文献   

20.
One hundred and twenty pigs, initially 4–5 kg liveweight, were fed on wheat-based diets supplemented with meat meal and amino acids in two experiments, each of 4 weeks duration.In the first experiment, the supplementation of a normal meat meal diet with lysine and methionine increased the feed intake and weight gains of the pigs by 15 and 18%, respectively. Nitrogen retention was increased by 30%. Tryptophane gave a similar response to lysine and methionine.In the second experiment, a 21% crude protein basal diet was similar to the basal diet of the first experiment but it contained 1.02% lysine and 0.50% methionine plus cystine, compared to 0.90 and 0.51%, respectively, in the first experiment. Lysine and methionine supplementation of the diet did not significantly improve the performance of the pigs in the second experiment, but the supplementation of the diets with 0.08% tryptophane and lysine and methionine increased weight gains and feed intakes and decreased urea content of the blood plasma. The 21% crude protein diet contained 0.15% tryptophane.Increasing the crude protein content of diets from 18 to 24% by increasing their meat meal content increased the daily weight gains from 190 to 276 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号