首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding‐site water molecules play a crucial role in protein‐ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding‐site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding‐site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding‐site water molecules by post‐processing molecular dynamics trajectories obtained from ligand‐free protein structure simulation in explicit water. Next, we implemented a distance‐dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding‐site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein‐ligand‐water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot‐spot binding‐site residues and structure‐based lead optimization. Proteins 2014; 82:1765–1776. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The discovery of clinically relevant inhibitors against MurF enzyme has proven to be a challenging task. In order to get further insight into the structural features required for the MurF inhibitory activity, we performed pharmacophore and atom-based three-dimensional quantitative structure–activity relationship studies for novel thiophene-3-carbonitriles based MurF inhibitors. The five-feature pharmacophore model was generated using 48 inhibitors having IC50 values ranging from 0.18 to 663?μm. The best-fitted model showed a higher coefficient of determination (R2?=?0.978), cross-validation coefficient (Q2?=?0.8835) and Pearson coefficient (0.9406) at four component partial least-squares factor. The model was validated with external data set and enrichment study. The effectiveness of the docking protocol was validated by docking the co-crystallized ligand into the catalytic pocket of MurF enzyme. Further, binding free energy calculated by the molecular mechanics generalized Born surface area approach showed that van der Waals and non-polar solvation energy terms are the main contributors to ligand binding in the active site of MurF enzyme. A 10-ns molecular dynamic simulation was performed to confirm the stability of the 3ZM6-ligand complex. Four new molecules are also designed as potent MurF inhibitors. These results provide insights regarding the development of novel MurF inhibitors with better binding affinity.  相似文献   

3.
Solvation plays an important role in ligand‐protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure‐based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non‐polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non‐polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand‐receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes. Proteins 1999;34:4–16. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   

5.
This article describes the implementation of a new docking approach. The method uses a Tabu search methodology to dock flexibly ligand molecules into rigid receptor structures. It uses an empirical objective function with a small number of physically based terms derived from fitting experimental binding affinities for crystallographic complexes. This means that docking energies produced by the searching algorithm provide direct estimates of the binding affinities of the ligands. The method has been tested on 50 ligand-receptor complexes for which the experimental binding affinity and binding geometry are known. All water molecules are removed from the structures and ligand molecules are minimized in vacuo before docking. The lowest energy geometry produced by the docking protocol is within 1.5 Å root-mean square of the experimental binding mode for 86% of the complexes. The lowest energies produced by the docking are in fair agreement with the known free energies of binding for the ligands. Proteins 33:367–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
The docking methodology was applied to three different therapeutically interesting enzymes: human dihydroorotate dehydrogenase (DHODH), Herpes simplex virus type I thymidine kinase (HSV1 TK) and human phosphodiesterase 4 (PDE4). Programs FlexX, AutoDock and DOCK where used. The three targets represent three distinct cases. For DHODH and HSV1 TK, the binding modes of substrate and inhibitors within the active site are known, while the binding orientation of cAMP within PDE4 has been solely hypothesized. Active site of DHODH is mainly hydrophobic and the binding mode of the inhibitor brequinar was used as a template for evaluating the docking strategies. The presence of cofactors revealed to be crucial for the definition of the docking site. The HSV1 TK active site is small and polar and contains crystal water molecules and ATP. Docking of thymidine and aciclovir (ACV) within the active site was analyzed by keeping or removing water molecules. It showed the crucial role of water in predicting the binding of pyrimidines and purines. The crystal structure of PDE4 contains magnesium and zinc cations as well as catalytic water molecule but no ligand. Several docking experiments of cAMP and rolipram were performed and the results showed clear-cut dependence between the ligand orientation and the presence of metals in the active site. All three cases show specific problems of the docking methodology, depending on the character of the active site.  相似文献   

7.
Luzhkov VB  Osterberg F  Aqvist J 《FEBS letters》2003,554(1-2):159-164
External tetraalkylammonium ion binding to potassium channels is studied using microscopic molecular modelling methods and the experimental structure of the KcsA channel. Relative binding free energies of the KcsA complexes with Me4N+, Et4N+, and n-Pr4N+ are calculated with the molecular dynamics free energy perturbation approach together with automated ligand docking. The four-fold symmetry of the entrance cavity formed by the Tyr82 residues is found to provide stronger binding for the D2d than for the S4 conformation of the ligands. In agreement with experiment the Et4N+ blocker shows several kcal/mol better binding than the other tetraalkylammonium ions.  相似文献   

8.
The phosphodiesterase-4 (PDE4) enzyme is a promising therapeutic target for several diseases. Our previous studies found resveratrol and moracin M to be natural PDE4 inhibitors. In the present study, three natural resveratrol analogs [pterostilbene, (E)-2′,3,5′,5-tetrahydroxystilbene (THSB), and oxyresveratrol] are structurally related to resveratrol and moracin M, but their inhibition and mechanism against PDE4 are still unclear. A combined method consisting of molecular docking, molecular dynamics (MD) simulations, binding free energy, and bioassay was performed to better understand their inhibitory mechanism. The binding pattern of pterostilbene demonstrates that it involves hydrophobic/aromatic interactions with Phe340 and Phe372, and forms hydrogen bond(s) with His160 and Gln369 in the active site pocket. The present work also reveals that oxyresveratrol and THSB can bind to PDE4D and exhibits less negative predicted binding free energies than pterostilbene, which was qualitatively validated by bioassay (IC50 = 96.6, 36.1, and 27.0 μM, respectively). Additionally, a linear correlation (R2 = 0.953) is achieved for five PDE4D/ligand complexes between the predicted binding free energies and the experimental counterparts approximately estimated from their IC50 values (≈RT ln IC50). Our results imply that hydrophobic/aromatic forces are the primary factors in explaining the mechanism of inhibition by the three products. Results of the study help to understand the inhibitory mechanism of the three natural products, and thus help the discovery of novel PDE4 inhibitors from resveratrol, moracin M, and other natural products.  相似文献   

9.
Xu L  Li Y  Li L  Zhou S  Hou T 《Molecular bioSystems》2012,8(9):2260-2273
Macrophage migration inhibitory factor (MIF), an immunoregulatory protein, is a potential target for a number of inflammatory diseases. In the current work, the interactions between MIF and a series of phenolic hydrazones were studied by molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis to determine the structural requirement for achieving favorable biological activity of phenolic hydrazones. First, molecular docking was used to predict the binding modes of inhibitors in the binding site of MIF. The good correlation between the predicted docking scores and the experimental activities shows that the binding conformations of the inhibitors in the active site of MIF are well predicted. Moreover, our results suggest that the flexibility of MIF is essential in ligand binding process. Then, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The predicted binding free energies given by MM/GBSA are not well correlated with the experimental activities for the two subsets of the inhibitors; however, for each subset, a good correlation between the predicted binding free energies and the experimental activities is achieved. The MM/GBSA free energy decomposition analysis highlights the importance of hydrophobic residues for the MIF binding of the studied inhibitors. Based on the essential factors for MIF-inhibitor interactions derived from the theoretical predictions, some derivatives were designed and the higher inhibitory activities of several candidates were confirmed by molecular docking studies. The structural insights obtained from our study are useful for designing potent inhibitors of MIF.  相似文献   

10.
Abstract

The docking methodology was applied to three different therapeutically interesting enzymes: human dihydroorotate dehydrogenase (DHODH), Herpes simplex virus type I thymidine kinase (HSV1 TK) and human phosphodiesterase 4 (PDE4). Programs FlexX, AutoDock and DOCK where used. The three targets represent three distinct cases. For DHODH and HSV1 TK, the binding modes of substrate and inhibitors within the active site are known, while the binding orientation of cAMP within PDE4 has been solely hypothesized. Active site of DHODH is mainly hydrophobic and the binding mode of the inhibitor brequinar was used as a template for evaluating the docking strategies. The presence of cofactors revealed to be crucial for the definition of the docking site. The HSV1 TK active site is small and polar and contains crystal water molecules and ATP. Docking of thymidine and aciclovir (ACV) within the active site was analyzed by keeping or removing water molecules. It showed the crucial role of water in predicting the binding of pyrimidines and purines. The crystal structure of PDE4 contains magnesium and zinc cations as well as catalytic water molecule but no ligand. Several docking experiments of cAMP and rolipram were performed and the results showed clear‐cut dependence between the ligand orientation and the presence of metals in the active site. All three cases show specific problems of the docking methodology, depending on the character of the active site.  相似文献   

11.
Predicting absolute ligand binding free energies to a simple model site   总被引:2,自引:0,他引:2  
A central challenge in structure-based ligand design is the accurate prediction of binding free energies. Here we apply alchemical free energy calculations in explicit solvent to predict ligand binding in a model cavity in T4 lysozyme. Even in this simple site, there are challenges. We made systematic improvements, beginning with single poses from docking, then including multiple poses, additional protein conformational changes, and using an improved charge model. Computed absolute binding free energies had an RMS error of 1.9 kcal/mol relative to previously determined experimental values. In blind prospective tests, the methods correctly discriminated between several true ligands and decoys in a set of putative binders identified by docking. In these prospective tests, the RMS error in predicted binding free energies relative to those subsequently determined experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new ligands bound in the cavity corresponded closely to predictions from the free energy calculations, but sometimes differed from those predicted by docking. Finally, we examined the impact of holding the protein rigid, as in docking, with a view to learning how approximations made in docking affect accuracy and how they may be improved.  相似文献   

12.
Genheden S  Ryde U 《Proteins》2012,80(5):1326-1342
We have compared the predictions of ligand‐binding affinities from several methods based on end‐point molecular dynamics simulations and continuum solvation, that is, methods related to MM/PBSA (molecular mechanics combined with Poisson–Boltzmann and surface area solvation). Two continuum‐solvation models were considered, viz., the Poisson–Boltzmann (PB) and generalised Born (GB) approaches. The nonelectrostatic energies were also obtained in two different ways, viz., either from the sum of the bonded, van der Waals, nonpolar solvation energies, and entropy terms (as in MM/PBSA), or from the scaled protein–ligand van der Waals interaction energy (as in the linear interaction energy approach, LIE). Three different approaches to calculate electrostatic energies were tested, viz., the sum of electrostatic interaction energies and polar solvation energies, obtained either from a single simulation of the complex or from three independent simulations of the complex, the free protein, and the free ligand, or the linear‐response approximation (LRA). Moreover, we investigated the effect of scaling the electrostatic interactions by an effective internal dielectric constant of the protein (?int). All these methods were tested on the binding of seven biotin analogues to avidin and nine 3‐amidinobenzyl‐1H‐indole‐2‐carboxamide inhibitors to factor Xa. For avidin, the best results were obtained with a combination of the LIE nonelectrostatic energies with the MM+GB electrostatic energies from a single simulation, using ?int = 4. For fXa, standard MM/GBSA, based on one simulation and using ?int = 4–10 gave the best result. The optimum internal dielectric constant seems to be slightly higher with PB than with GB solvation. © Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Prediction of interaction energies between ligands and their receptors remains a major challenge for structure-based inhibitor discovery. Much effort has been devoted to developing scoring schemes that can successfully rank the affinities of a diverse set of possible ligands to a binding site for which the structure is known. To test these scoring functions, well-characterized experimental systems can be very useful. Here, mutation-created binding sites in T4 lysozyme were used to investigate how the quality of atomic charges and solvation energies affects molecular docking. Atomic charges and solvation energies were calculated for 172,118 molecules in the Available Chemicals Directory using a semi-empirical quantum mechanical approach by the program AMSOL. The database was first screened against the apolar cavity site created by the mutation Leu99Ala (L99A). Compared to the electronegativity-based charges that are widely used, the new charges and desolvation energies improved ranking of known apolar ligands, and better distinguished them from more polar isosteres that are not observed to bind. To investigate whether the new charges had predictive value, the non-polar residue Met102, which forms part of the binding site, was changed to the polar residue glutamine. The structure of the resulting Leu99Ala and Met102Gln double mutant of T4 lysozyme (L99A/M102Q) was determined and the docking calculation was repeated for the new site. Seven representative polar molecules that preferentially docked to the polar versus the apolar binding site were tested experimentally. All seven bind to the polar cavity (L99A/M102Q) but do not detectably bind to the apolar cavity (L99A). Five ligand-bound structures of L99A/M102Q were determined by X-ray crystallography. Docking predictions corresponded to the crystallographic results to within 0.4A RMSD. Improved treatment of partial atomic charges and desolvation energies in database docking appears feasible and leads to better distinction of true ligands. Simple model binding sites, such as L99A and its more polar variants, may find broad use in the development and testing of docking algorithms.  相似文献   

14.
The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors.  相似文献   

15.
Nidhi Singh  Arieh Warshel 《Proteins》2010,78(7):1724-1735
One of the most important requirements in computer‐aided drug design is the ability to reliably evaluate the binding free energies. However, the process of ligand binding is very complex because of the intricacy of the interrelated processes that are difficult to predict and quantify. In fact, the deeper understanding of the origin of the observed binding free energies requires the ability to decompose these free energies to their contributions from different interactions. Furthermore, it is important to evaluate the relative entropic and enthalpic contributions to the overall free energy. Such an evaluation is useful for assessing temperature effects and exploring specialized options in enzyme design. Unfortunately, calculations of binding entropies have been much more challenging than calculations of binding free energies. This work is probably the first to present microscopic evaluation of all of the relevant components to the binding entropy, namely configurational, polar solvation, and hydrophobic entropies. All of these contributions are evaluated by the restraint release approach. The calculated results shed an interesting light on major compensation effects in both the solvation and hydrophobic effect and, despite some overestimate, can provide very useful insight. This study also helps in analyzing some problems with the widely used molecular mechanics/Poisson‐Boltzmann surface area approach. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, ?57.30?kcal/mol) and electrostatic solvation (ΔGsolv, ?36.86?kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand–protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1–D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.  相似文献   

17.
Hydration of protein cavities influences protein stability, dynamics, and function. Protein active sites usually contain water molecules that, upon ligand binding, are either displaced into bulk solvent or retained to mediate protein–ligand interactions. The contribution of water molecules to ligand binding must be accounted for to compute accurate values of binding affinities. This requires estimation of the extent of hydration of the binding site. However, it is often difficult to identify the water molecules involved in the binding process when ligands bind on the surface of a protein. Cytochrome P450cam is, therefore, an ideal model system because its substrate binds in a buried active site, displacing partially disordered solvent, and the protein is well characterized experimentally. We calculated the free energy differences for having five to eight water molecules in the active site cavity of the unliganded enzyme from molecular dynamics simulations by thermodynamic integration employing a three-stage perturbation scheme. The computed free energy differences between the hydration states are small (within 12 kJ mol−1) but distinct. Consistent with the crystallographic determination and studies employing hydrostatic pressure, we calculated that, although ten water molecules could in principle occupy the volume of the active site, occupation by five to six water molecules is thermodynamically most favorable. Proteins 32:381–396, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
19.
High-throughput docking is a computational tool frequently used to discover small-molecule inhibitors of enzymes or receptors of known three-dimensional structure. Because of the large number of molecules in chemical libraries, automatic procedures to prune multimillion compound collections are useful for high-throughput docking and necessary for in vitro screening. Here, we propose an anchor-based library tailoring approach (termed ALTA) to focus a chemical library by docking and prioritizing molecular fragments according to their binding energy which includes continuum electrostatics solvation. In principle, ALTA does not require prior knowledge of known inhibitors, but receptor-based pharmacophore information (hydrogen bonds with the hinge region) is additionally used here to identify molecules with optimal anchor fragments for the ATP-binding site of the EphB4 receptor tyrosine kinase. The 21,418 molecules of the focused library (from an initial collection of about 730,000) are docked into EphB4 and ranked by force-field-based energy including electrostatic solvation. Among the 43 compounds tested in vitro, eight molecules originating from two different anchors show low-micromolar activity in a fluorescence-based enzymatic assay. Four of them are active in a cell-based assay and are potential anti-angiogenic compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号