首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is increasingly recognized that the tumor microenvironment plays a critical role in the initiation and progression of lung cancer. In particular interaction of cancer cells, macrophages, and inflammatory response in the tumor microenvironment has been shown to facilitate cancer cell invasion and metastasis. The specific molecular pathways in macrophages that immunoedit tumor growth are not well defined. Triggering receptor expressed on myeloid cells 1 (TREM-1) is a member of the super immunoglobulin family expressed on a select group of myeloid cells mainly monocyte/macrophages. Recent studies suggest that expression of TREM-1 in tumors may predict cancer aggressiveness and disease outcomes in liver and lung cancer however the mechanism of TREM-1 expression in the setting of cancer is not defined. In this study we demonstrate that tumor tissue from patients with non-small cell lung cancer show an increased expression of TREM-1 and PGE2. Immunohistochemistry and immunofluorescence confirmed that the expression of TREM-1 was selectively seen in CD68 positive macrophages. By employing an in vitro model we confirmed that expression of TREM-1 is increased in macrophages that are co-cultured with human lung cancer cells. Studies with COX-2 inhibitors and siCOX-2 showed that expression of TREM-1 in macrophages in tumor microenvironment is dependent on COX-2 signaling. These studies for the first time define a link between tumor COX-2 induction, PGE2 production and expression of TREM-1 in macrophages in tumor microenvironment and suggest that TREM-1 might be a novel target for tumor immunomodulation.  相似文献   

2.
肿瘤细胞和免疫细胞间的相互作用一直是肿瘤生物学关注的热点.流行病学与临床研究均表明,炎症反应与肿瘤的发生发展存在密切关联,但是其中的分子作用机理和遗传学机制尚未完全阐明.研究显示,T淋巴细胞、巨噬细胞、树突状细胞、巨大细胞等多种免疫细胞会浸润到肿瘤微环境中,协同调控肿瘤生长、免疫逃逸和侵袭转移.本文就近年对肿瘤微环境中免疫细胞功能研究的进展进行综述.正确认识这些免疫细胞在肿瘤发生发展中的作用,对于发展更优的肿瘤免疫治疗手段具有十分重要意义.  相似文献   

3.
血小板反应蛋白4 (thrombospondin 4, THBS4)属于THBS家族成员,是细胞外基质分泌的蛋白质,参与调控细胞增殖、黏附及血管生成等多种生理过程。近来研究表明,机体在炎症刺激下加速产生THBS4并诱导巨噬细胞粘附与积累。我们的前期研究证实,THBS4在肝癌(hepatocellular carcinoma, HCC)中发挥促癌作用,但THBS4对肝癌免疫微环境的影响尚不明确。本文旨在分析THBS4通过诱导肿瘤相关巨噬细胞M2型极化,促进肝癌细胞转移的作用。通过肝癌条件培养基(HCC conditioned medium, HCM)模拟肿瘤微环境,发现在HCM作用下巨噬细胞中THBS4表达呈时间依赖性升高(P<0.05);下调THBS4促使M1型巨噬细胞标志物IL-1β、CD86的表达升高(P<0.01),而M2型标志物IL-10和CD206表达降低(P<0.01)。进一步通过Transwell共培养实验检测THBS4诱导的M2型巨噬细胞对肝癌转移的影响。将下调THBS4的M2型巨噬细胞(M2-TAMs)与HepG2肝癌细胞进行共培养。结果显示,下调T...  相似文献   

4.
Certain immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key immune players in the tumor microenvironment, we applied highly invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells and identified CXCL7 by cytokine array as one of the increasingly secreted cytokines by THP-1 cells. Further investigations indicated that upon co-culturing, breast cancer cells secreted CSF1 to induce expression and release of CXCL7 from monocytes, which in turn acted on cancer cells to promote FAK activation, MMP13 expression, migration, and invasion. In a xenograft mouse model, administration of CXCL7 antibodies significantly reduced abundance of M2 macrophages in tumor microenvironment, as well as decreased tumor growth and distant metastasis. Clinical investigation further suggested that high CXCL7 expression is correlated with breast cancer progression and poor overall survival of patients. Overall, our study unveils an important immune cytokine, CXCL7, which is secreted by tumor infiltrating monocytes, to stimulate cancer cell migration, invasion, and metastasis, contributing to the promotion of breast cancer progression.Subject terms: Breast cancer, Cancer microenvironment, Target identification, Chemokines  相似文献   

5.
Tumor progression is controlled by signals from cellular and extra-cellular microenvironment including stromal cells and the extracellular matrix. Consequently, three-dimensional in vitro tumor models are essential to study the interaction of tumor cells with their microenvironment appropriately in a biologically relevant manner. We have previously used organotypic co-cultures to analyze the malignant growth of human squamous cell carcinoma (SCC) cell lines on a stromal equivalent in vitro. In this model, SCC cell lines are grown on a collagen-I gel containing fibroblasts. Since macrophages play a critical role in the progression of many tumor types, we now have expanded this model by integrating macrophages into the collagen gel of these organotypic tumor co-cultures. This model was established as a murine and a human system of skin SCCs. The effect of macrophages on tumor progression depends on their polarization. We demonstrate that macrophage polarization in organotypic co-cultures can be modulated towards and M1 or an M2 phenotype by adding recombinant IFN-γ and LPS or IL-4 respectively to the growth medium. IL-4 stimulation of macrophage-containing cultures resulted in enhanced tumor cell invasion evidenced by degradation of the basement membrane, enhanced collagenolytic activity and increased MMP-2 and MMP-9. Interestingly, extended co-culture with tumor cells for three weeks resulted in spontaneous M2 polarization of macrophages without IL-4 treatment. Thus, we demonstrate that macrophages can be successfully integrated into organotypic co-cultures of murine or human skin SCCs and that this model can be exploited to analyze macrophage activation towards a tumor supporting phenotype.  相似文献   

6.
Jacobs VL  Liu Y  De Leo JA 《PloS one》2012,7(5):e37955
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain cancer, with a median survival of less than 2 years after diagnosis with current available therapies. The tumor microenvironment serves a critical role in tumor invasion and progression, with microglia as a critical player. Our laboratory has previously demonstrated that propentofylline, an atypical methylxanthine with central nervous system glial modulating and anti-inflammatory actions, significantly decreases tumor growth in a GBM rodent model by preferentially targeting microglia. In the present study, we used the CNS-1 rat glioma model to elucidate the mechanisms of propentofylline. Here we demonstrate that propentofylline targets TROY, a novel signaling molecule up-regulated in infiltrating microglia, and not macrophages, in response to CNS-1 cells. We identify Pyk2, Rac1 and pJNK as the downstream signaling molecules of TROY through western blot analysis and siRNA transfection. We demonstrate that inhibition of TROY expression in microglia by siRNA transfection significantly inhibits microglial migration towards CNS-1 cells similar to 10 μM propentofylline treatment. These results identify TROY as a novel molecule expressed in microglia, involved in their migration and targeted by propentofylline. Furthermore, these results describe a signaling molecule that is differentially expressed between microglia and macrophages in the tumor microenvironment.  相似文献   

7.
Activated EGF receptor (EGFR) signaling plays an instrumental role in glioblastoma (GBM) progression. However, how EGFR activation regulates the tumor microenvironment to promote GBM cell invasion remains to be clarified. Here, we demonstrate that the levels of EGFR activation in tumor cells correlated with the levels of macrophage infiltration in human GBM specimens. This was supported by our observation that EGFR activation enhanced the interaction between macrophages and GBM cells. In addition, EGF treatment induced up-regulation of vascular cell adhesion molecule-1 (VCAM-1) expression in a PKCϵ- and NF-κB-dependent manner. Depletion of VCAM-1 interrupted the binding of macrophages to GBM cells and inhibited EGF-induced and macrophage-promoted GBM cell invasion. These results demonstrate an instrumental role for EGF-induced up-regulation of VCAM-1 expression in EGFR activation-promoted macrophage-tumor cell interaction and tumor cell invasion and indicate that VCAM-1 is a potential molecular target for improving cancer therapy.  相似文献   

8.
Although there is a growing literature describing the role of macrophages in breast cancer, the role of macrophages in inflammatory breast cancer (IBC) is unclear. The aim of present study was to isolate and characterize tumor associated macrophages of IBC and non-IBC patients and define their role in IBC. Tumor infiltrating monocytes/macrophages (CD14+ and CD68+) were measured by immunohistochemistry using specific monoclonal antibodies. Blood drained from axillary vein tributaries was collected during breast cancer surgery and the percentage of CD14+ in the total isolated leukocytes was assessed by flow cytometric analysis. CD14+ cells were separated from total leukocytes by immuno-magnetic beads technique and were cultured overnight. Media conditioned by CD14+ were collected and subjected to cytokine profiling using cytokine antibody array. Wound healing and invasion assays were used to test whether cytokines highly secreted by tumor drained macrophages induce motility and invasion of breast cancer cells. We found that macrophages highly infiltrate into carcinoma tissues of IBC patients. In addition blood collected from axillary tributaries of IBC patients is highly enriched with CD14+ cells as compared to blood collected from non-IBC patients. Cytokine profiling of CD14+ cells isolated from IBC patients revealed a significant increase in secretion of tumor necrosis factor-α; monocyte chemoattractant protein-1/CC-chemokine ligand 2; interleukin-8 and interleukin-10 as compared to CD14+ cells isolated from non-IBC patients. Tumor necrosis factor-α, interleukin-8 and interleukin-10 significantly increased motility and invasion of IBC cells in vitro. In conclusion, macrophages isolated from the tumor microenvironment of IBC patients secrete chemotactic cytokines that may augment dissemination and metastasis of IBC carcinoma cells.  相似文献   

9.
In breast cancer, tumor-associated macrophages with activated phenotypes promote tumor invasion and metastasis. The more aggressive mesenchymal-like breast cancer cells have a selective advantage, skewing macrophages toward the more immunosuppressive subtype. However, the mechanism underlying this shift is poorly understood. Cyclin D1b is a highly oncogenic variant of cyclin D1. Our previous study showed that non-metastatic epithelial-like breast cancer cells were highly metastatic in vivo when cyclin D1b was overexpressed. The present study determined whether cyclin D1b contributed to the interaction between breast cancer cells and macrophages. The results showed that cyclin D1b promoted the invasion of breast cancer cells in vitro. Specifically, through overexpression of cyclin D1b, breast cancer cells regulated the differentiation of macrophages into a more immunosuppressive M2 phenotype. Notably, tumor cells overexpressing cyclin D1b activated macrophages and induced migration of breast cancer cells. Further investigations indicated that SDF-1 mediated macrophage activation through breast cancer cells overexpressing cyclin D1b. These results revealed a previously unknown link between aggressive breast cancer cells and Tumor-associated macrophages, and highlighted the importance of cyclin D1b activity in the breast cancer microenvironment.  相似文献   

10.
This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.  相似文献   

11.
Tumor-associated macrophages (TAMs) derived from peripheral blood monocytes recruited into the renal cell carcinoma (RCC) microenvironment. In response to inflammatory stimuli, macrophages undergo M1 (classical) or M2 (alternative) activation. M1 cells produce high levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-12, IL-23 and IL-6, while M2 cells produce anti-inflammatory cytokines, such as IL-10, thus contributing to RCC-related immune dysfunction. The presence of extensive TAM infiltration in RCC microenvironment contributes to cancer progression and metastasis by stimulating angiogenesis, tumor growth, and cellular migration and invasion. Moreover, TAMs are involved in epithelial–mesenchymal transition of RCC cancer cells and in the development of tumor resistance to targeted agents. Interestingly, macrophage autophagy seems to play an important role in RCC. Based on this scenario, TAMs represent a promising and effective target for cancer therapy in RCC. Several strategies have been proposed to suppress TAM recruitment, to deplete their number, to switch M2 TAMs into antitumor M1 phenotype and to inhibit TAM-associated molecules. In this review, we summarize current data on the essential role of TAMs in RCC angiogenesis, invasion, impaired anti-tumor immune response and development of drug resistance, thus describing the emerging TAM-centered therapies for RCC patients.  相似文献   

12.
The presence of tumor-associated macrophages (TAMs) in melanomas is correlated with a poor clinical prognosis. However, there is limited information on the characteristics and biological activities of human TAMs in melanomas. In this study, we developed an in vitro method to differentiate human monocytes to macrophages using modified melanoma-conditioned medium (MCM). We demonstrate that factors from MCM-induced macrophages (MCMI-Mφ) express both M1-Mφ and M2-Mφ markers and inhibit melanoma-specific T-cell proliferation. Furthermore, microarray analyses reveal that the majority of genes up-regulated in MCMI-Mφ are associated with tumor invasion. The most strikingly up-regulated genes are CCL2 and MMP-9. Consistent with this, blockade of both CCL-2 and MMPs diminish MCMI-Mφ-induced melanoma invasion. Finally, we demonstrated that both MCMI-Mφ and in vivo TAMs express the pro-invasive, melanoma-associated gene, glycoprotein non-metastatic melanoma protein B. Our study provides a framework for understanding the mechanisms of cross-talk between TAMs and melanoma cells within the tumor microenvironment.  相似文献   

13.
Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa.  相似文献   

14.
肿瘤细胞在氧气充足的情况下以糖酵解的方式供能,这一现象称为“瓦伯格”效应,被认为是肿瘤的第七大特征。上皮间质转化(epithelial mesenchymal transition,EMT)是一种重要的细胞过程,参与胚胎发育、伤口愈合及肿瘤的发生等过程中,被认为是恶性肿瘤的重要特征。近年研究表明,“瓦伯格”效应和上皮间质转化的发生均与肿瘤处于乏氧微环境密切相关。乏氧微环境除可直接诱导上皮间质转化发生外,还可诱导肿瘤细胞产生“瓦伯格”效应,进一步促进上皮间质转化的发生。本文就乏氧微环境、“瓦伯格”效应、以及上皮间质转化的相关性的研究进展做一综述,有助于揭示乏氧微环境、肿瘤能量代谢改变以及肿瘤迁移侵袭之间的因果关联。  相似文献   

15.
16.
黏着斑激酶(focal adhesion kinase, FAK)是一种胞质非受体酪氨酸激酶。FAK和肿瘤密切相关,在多种癌细胞中高表达,促进癌细胞的发生、生长、存活、增殖、粘附、转移和侵袭以及血管生成等过程。肿瘤微环境包括肿瘤细胞、周围血管、免疫细胞、纤维母细胞、内皮细胞、信号分子和细胞外基质,它对癌症的发展和恶化具有重要作用。肿瘤细胞可以通过分泌细胞外信号影响微环境,使其有利于肿瘤生存和发展|肿瘤微环境中的基质细胞能通过产生趋化因子、基质降解酶和生长因子促进肿瘤侵袭和转移。本文综述肿瘤微环境在癌症发生发展过程中的作用及FAK在肿瘤微环境中的调控作用,为肿瘤疾病的治疗提供新思路。  相似文献   

17.
Early studies indicated that the androgen receptor (AR) might play important roles in the regulating of the initiation and progression of hepatocellular carcinoma (HCC), but its linkage to the surrounding macrophages and their impacts on the HCC progression remain unclear. Here we found that macrophages in liver cancer might function via altering the microRNA, miR-92a-2-5p, in exosomes to decrease liver cancer cells AR expression, which might then lead to increase the liver cancer cells invasion. Mechanism dissection revealed that miR-92a-2-5p from the exosomes could target the 3′UTR of AR mRNA to suppress AR translation, altering the PHLPP/p-AKT/β-catenin signaling to increase liver cancer cells invasion. Preclinical studies demonstrated that targeting this newly identified signaling with miR-92a-2-5p inhibitors led to suppress liver cancer progression. Together, these findings suggest that macrophages in the liver cancer tumor microenvironment may function via exosomes to regulate liver cancer progression, and targeting this newly identified macrophages/exosomes-miR-92a-2-5p/AR/PHLPP/p-AKT/β-catenin signaling may help in the development of novel treatment strategies to better suppress liver cancer progression.Subject terms: Cancer microenvironment, Oncogenes  相似文献   

18.
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.  相似文献   

19.
Maturation of macrophages is influenced by the composition of surrounding microenvironment. Expression of CMKLR1, the receptor for chemerin, is potentially associated with the differentiation status of macrophages. In this study, CMKLR1 was determined on peritoneal and tumor-infiltrating macrophages. CMKLR1 expression was found to be associated with the fibroblast-assisted maturation of J744A.1 monocyte/macrophage cells in the co-cultures established to model tumor microenvironment, whereas the presence of tumor cells was able to upregulate CMKLR1 expression independent of macrophage maturation. In addition, macrophages cultured with tumor cells or in tumor cell-conditioned media responded to recombinant chemerin(17-156) peptide and increased the expression of proinflammatory IL-1β, TNF-α and IL-12 p40 cytokines. The native form of chemerin (prochemerin) supplied by fibroblasts did not induce a functional response. These observations may indicate a potential role for chemerin and CMKLR1 in the regulation of inflammatory responses in the tumor microenvironment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号