首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[3H]Pyridoxal-P can be covalently incorporated into Escherichia coli B mutant strain AC70R1 ADP-glucose synthase by reduction with NaBH4. Two distinct lysine residues can be modified by the allosteric activator pyridoxal-P. Incorporation of [3H]pyridoxal-P in the presence of substrate ADP-glucose + MgCl2 prevents pyridoxylation of an ADP-glucose-protected site and allows modification of the allosteric activator site. Incorporation of [3H]pyridoxal-P in the presence of the allosteric effector, 1,6-hexanediol-P2, protects against pyridoxylation of the allosteric activator site and allows modification of the ADP-glucose-protected site. The activator site CNBr [3H]pyridoxyl-P peptide was purified to homogeneity in the presence of urea by Sephadex G-50 and CM-cellulose chromatography. The peptide consists of 59 residues, with a molecular weight of 6750. The NH2-terminal of the peptide has a 16-residue sequence overlap with the previously determined NH2-terminal sequence of the native enzyme. The activator site pyridoxyl-P lysine is identified as residue 38 of the native enzyme's NH2 terminus. The ADP-glucose-protected site CNBr [3H]pyridoxyl peptide was purified to homogeneity by Sephadex G-50 and DEAE-cellulose chromatography. The peptide consists of 21 residues, with a molecular weight of 2460. The sequence of this peptide has been elucidated.  相似文献   

2.
An Escherichia coli B mutant, SG14, accumulates glycogen at 28% the rate observed for the parent E. coli B strain. The glycogen accumulated in the mutant is similar to the glycogen isolated from the parent strain with respect to alpha- and beta-amylosis, chain length determination, and I2-complex absorption spectra. The SG14 mutant contains normal glycogen synthase and branching enzyme activity but has an ADP-glucose pyrophosphorylase with altered kinetic and allosteric properties. The mutant enzyme has been partially purified and requires a 12-fold higher concentration of fructose-P2 or a 26 fold higher concentration of pyridoxal-P than the parent type enzyme for 50% of maximal allosteric activation. TPNH, an effective activator of the E. coli B enzyme, does not activate the SG14 ADP-glucose pyrophosphorylase. Other studies show that for the SG14 enzyme the concentrations of ATP and Mg2+ in the synthesis direction and the concentrations of ADP-glucose and PPi in the pyrophosphorolysis direction required to give 50% of maximal activity are 3- to 6-fold higher than those observed for the parent E. coli B ADP-glucose pyrophosphorylase. The Km for alpha-glucose-1-P at saturating to half-saturating concentrations of the activator, fructose-P2, are about the same for both enzymes. However, in the presence of no activator, the concentration of glucose-1-P required for half-maximal activity is about 1.8-fold higher for the SG14 enzyme. Thus SG14 ADP-glucose pyrophosphorylase has lower affinity for its substrates than does the parent enzyme. Previously the SG14 enzyme had been shown to be less sensitive to inhibition by 5'-AMP than the E. coli B enzyme. This ensensitivity to inhibition renders the SG14 enzyme less responsive to energy charge than the E. coli B ADP-glucose pyrophosphorylase. On the basis of the above results and taking into account the reported concentrations of fructose-P2, of pyridoxal-P, and of the adenine nucleotide pool and its energy charge in E. coli strains, it is concluded that furctose-P2 is the important physiological allosteric activator of E. coli ADP-glucose pyrophosphorylase. Furthermore, the 1.7-fold increased rate of accumulation of glycogen observed when E. coli B or SG14 shifts from exponential phase to stationary phase of growth in nitrogen-limiting media can be accounted for by the 2.4-fold increase of the levels of the glycogen biosynthetic enzymes, glycogen synthase, and ADP-glucose pyrophosphorylase. Thus both allosteric regulation of the ADP-glucose pyrophosphorylase as well as the genetic regulation of the biosynthesis of the glycogen biosynthetic enzymes are involved in the regulation of glycogen accumulation in E. coli B.  相似文献   

3.
Kinetic studies with ADP-glucose synthase show that 1,6-hexanediol bisphosphate (1,6-hexanediol-P2) is an effective activator that causes the enzyme to have a higher apparent affinity for ATP- and ADP-glucose than when fructose-1,6-P2 is the activator. Furthermore, in the presence of 1,6-hexanediol-P2, substrate saturation curves are hyperbolic shaped rather than sigmoidal shaped. CrATP behaves like a nonreactive analogue of ATP. Kinetic studies show that it is competitive with ATP. CrATP is not a competitive inhibitor of ADP-glucose. However, the combined addition of CrATP and glucose-1-P inhibits the enzyme competitively when ADP-glucose is the substrate. In binding experiments, CrATP, ATP, and fructose-P2 appear to bind to only half of the expected sites in the tetrameric enzyme, while ADP-glucose, the activators, pyridoxal-P and 1,6-hexanediol-P2, and the inhibitor, AMP, bind to four sites/tetrameric enzyme. Fructose-P2 inhibits 1,6-hexanediol-P2 binding, suggesting competition for the same sites. Glucose-1-P does not bind to the enzyme unless MgCl2 and CrATP are present and binds to four sites/tetrameric enzyme. Alternatively, CrATP in the presence of glucose-1-P binds to four sites/tetrameric enzyme. Thus, there are binding sites for the substrates, activators, and inhibitor located on each subunit and the binding sites can interact homotropically and heterotropically. ATP and fructose-P2 binding is synergistic showing heterotropic cooperativity. ATP and fructose-P2 must also be present together to effectively inhibit AMP binding. A mechanism is proposed which explains some of the kinetic and binding properties in terms of an asymmetry in the distribution of the conformational states of the four identical subunits.  相似文献   

4.
C A Carlson  J Preiss 《Biochemistry》1982,21(8):1929-1934
Inactivation of Escherichia coli ADP-glucose synthetase (EC 2.7.2.27) by the arginine-specific reagents cyclohexanedione and phenylglyoxal resulted primarily from interference with normal allosteric activation. Partial modification by phenylglyoxal resulted in a lessened ability of fructose 1,6-bisphosphate (fructose-P2) to stimulate and of 5'-AMP (5'-adenylate) to inhibit enzymic activity. The apparent affinity for fructose-P2 and the Vmax at saturating fructose-P2 concentrations were decreased by the arginine modification. Fructose-P2, 5'-adenylate, and several other allosteric effectors were able to partially protect the enzyme from inactivation. However, catalytic activity was not decreased by arginine modification under conditions where the enzyme was assayed in the absence of fructose-P2. The two arginine-modifying reagents differed markedly in their reactivity with the enzyme. Cyclohexanedione inactivated the enzyme quite slowly and eventually reacted with at least 14 of the 32 arginines present per subunit. Phenylglyoxal was some 50-fold more effective in inactivation, but it modified only one arginine residue per subunit.  相似文献   

5.
Pyridoxal-P can be covalently linked to E. coli B ADPglucose pyrophosphorylase by reduction with sodium borohydride. The modified enzyme is almost fully active when less than 1 mole of pyridoxal-P is incorporated per mole of enzyme subunit and is no longer dependent on the presence of allosteric activators in reaction mixtures for high activity. The allosteric activators, fructose-P2 or hexanediol 1,6 bisphosphate, decrease the incorporation of pyridoxal-P into enzyme suggesting that the pyridoxal-P is linked at or near the allosteric activator binding site. Acid hydrolysis of the modified enzyme yields pyridoxyllysine suggesting that the epsilon amino group of lysine is functional in the binding of the allosteric activators of the enzyme.  相似文献   

6.
Inactivation of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase by pyridoxal 5'-P followed by reduction with NaBH4 was studied. Fructose-6-P,2-kinase is over 80% inactivated by 2 mM pyridoxal 5'-P. The stoichiometry of the pyridoxyl-P incorporation and the inactivation of the kinase follows a biphasic curve. The first P-pyridoxyl residue incorporated per protomer does not affect fructose-6-P,2-kinase, but the next two P-pyridoxyl incorporation/protomer results in 80% inactivation. The Km values for ATP and fructose-6-P of the enzymes containing varying amounts of P-pyridoxyl groups at intermediate levels of inactivation are not altered, but Vmax is decreased. Among the metabolites tested, only fructose-2,6-P2 and Mg-ATP are competitive with pyridoxal-P and protect the enzyme against the inactivation. Neither the activity nor the fructose-6-P inhibition of fructose-2,6-bisphosphatase is affected by the modification. The acid hydrolysate of the inactive P-[3H]pyridoxyl enzyme contained only [3H]pyridoxyl lysine. High performance liquid chromatography of tryptic peptides of phospho[3H]pyridoxyl enzymes reveals two peptides which were missing in the enzyme protected by fructose-2,6-P2 or ATP during the modification reaction. These peptides have been isolated, and their amino acid sequences have been determined as Asp-Gln-Asp-Lys-Tyr-Arg and Asp-Val-His-Lys-Tyr. Pyridoxal-P reacts specifically with two lysine residues at the fructose-2,6-P2-binding site of fructose-6-P,2-kinase but not that of fructose-2,6-bisphosphatase. The site may also overlap with the ATP-binding site.  相似文献   

7.
Pyridoxal-P has been shown to be an activator of the spinach leaf ADP-glucose pyrophosphorylase. It has a higher apparent affinity than the physiological activator 3-phosphoglycerate but only activates the enzyme activity 6-fold whereas 3-phosphoglycerate gives a 25-fold activation. Reductive phosphopyridoxylation of the spinach leaf enzyme results in enzyme having less dependence on the presence of activator for activity. Labeled pyridoxal-P is incorporated into both the 54- and 51-kilodalton subunits of the spinach leaf enzyme. The incorporation is inhibited by the presence of either 3-phosphoglycerate or the allosteric inhibitor, inorganic phosphate, thus suggesting that pyridoxal phosphate is covalently bound to the allosteric activator site. The pyridoxal phosphate is bound to an epsilon-amino group of a lysine residue. The phosphopyridoxylated enzyme is more resistant to phosphate inhibition than the unmodified form. The modified 51-kDa subunit has been digested with trypsin, and the peptide containing the labeled pyridoxal phosphate has been purified via high performance liquid chromatography and sequenced. Comparison of this sequence with the deduced amino acid sequence of a rice endosperm cDNA clone indicates that the putative allosteric site of the 51-kDa subunit is close to the carboxyl-terminal. This is in contrast to what had been demonstrated for the position of the activator site of the Escherichia coli ADP-glucose pyrophosphorylase which was shown to be close to the amino-terminal of the subunit.  相似文献   

8.
Rabbit skeletal muscle glycogen synthase was inhibited by pyridoxal 5'-phosphate and irreversibly inactivated after sodium borohydride reduction of the enzyme-pyridoxal-P complex. The irreversible inactivation by pyridoxal-P was opposed by the presence of the substrate UDP-glucose. With [3H]pyridoxal-P, covalent incorporation of 3H label into the enzyme could be monitored. UDP-glucose protected against 3H incorporation, whereas glucose-6-P was ineffective. Peptide mapping of tryptic digests indicated that two distinct peptides were specifically modified by pyridoxal-P. One of these peptides contained the NH2-terminal sequence of the glycogen synthase subunit. Chymotrypsin cleavage of this peptide resulted in a single-labeled fragment with the sequence: Glu-Val-Ala-Asn-(Pyridoxal-P-Lys)-Val-Gly-Gly-Ile-Tyr. This sequence is identical to that previously reported (Tagaya, M., Nakano, K., and Fukui, T. (1985) J. Biol. Chem. 260. 6670-6676) for a peptide specifically modified by a substrate analogue and inferred to form part of the active site of the enzyme. Sequence analysis revealed that the modified lysine was located at residue 38 from the NH2 terminus of the rabbit muscle glycogen synthase subunit. An analogous tryptic peptide obtained from the rabbit liver isozyme displayed a high degree of sequence homology in the vicinity of the modified lysine. We propose that the extreme NH2 terminus of the glycogen synthase subunit forms part of the catalytic site, in close proximity to one of the phosphorylated regions of the enzyme (site 2, serine 7). In addition, the work extends the known NH2-terminal amino acid sequences of both the liver and muscle glycogen synthase isozymes.  相似文献   

9.
In order to label phosphate binding sites, unadenylylated glutamine synthetase from Escherichia coli has been pyridoxylated by reacting the enzyme with pyridoxal 5'-phosphate followed by reduction of the Schiff base with NaBH4. A complete loss in Mg2+-supported activity is associated with the incorporation of 3 eq of pyridoxal-P/subunit of the dodecamer. At this extent of modification, however, the pyridoxylated enzyme exhibits substantial Mn2+-supported activity (with increased Km values for ATP and ADP). The sites of pyridoxylation appear to have equal affinities for pyridoxal-P and to be at the enzyme surface, freely accessible to solvent. At least one of the three covalently bound pyridoxamine 5'-phosphate groups is near the subunit catalytic site and acts as a spectral probe for the interactions of the manganese.enzyme with substrates. A spectral perturbation of covalently attached pyridoxamine-P groups is caused also by specific divalent cations (Mn2+, Mg2+ or Ca2+) binding at the subunit catalytic site (but not while binding to the subunit high affinity, activating Me2+ site). In addition, the feedback inhibitors, AMP, CTP, L-tryptophan, L-alanine, and carbamyl phosphate, perturb protein-bound pyridoxamine-P groups. The spectral perturbations produced by substrate and inhibitor binding are pH-dependent and different in magnitude and maximum wavelength. Adenylylation sites are not major sites of pyridoxylation.  相似文献   

10.
The lysine reagent pyridoxal 5-phosphate was applied to the ADP/ATP carrier (AAC) in order to elucidate topological and functional properties of the numerous lysines within the primary structure. To establish appropriate labeling conditions, the influence of pyridoxal-P on transport and inhibitor binding to the AAC was examined. The ADP/ATP transport is sensitive to low concentrations of pyridoxal-P with a Ki = 0.4 mM. Binding of [3H]carboxyatracylate and [3H]bongkrekate is largely inhibited by pyridoxal-P treatment with Ki approximately 1 mM. [3H]Carboxyatractylate is not and [3H]bongkrekate weakly removed by pyridoxal-P, whereas [3H]atractylate is displaced to a large extent. Under optimized conditions of pyridoxal-P concentration, of pH and of time exposure, the AAC was exposed to [3H]pyridoxal-P in mitochondria, in submitochondrial particles and in the detergent-solubilized carrier. The [3H]pyridoxal-P-labeled AAC was isolated from mitochondria and particles. After citraconylation thermolysinolytic peptides were prepared. The pyridoxyl-lysine-containing peptides were purified and the pyridoxal-P incorporation to specific lysines was determined by sequencing. The pyridoxal-P incorporation into the AAC in various states was evaluated with regard to structural and functional aspects. First, by comparing pyridoxal-P incorporation in mitochondria and sonic particles, the segments of the polypeptide chain exposed to the cytosolic and matrix side of the membrane are detected. Second, the additional lysine incorporation into the isolated as compared to the membrane-bound carrier is attributed to the protein collar facing the phospholipid headgroups. Third, the difference between lysine incorporation into the carboxyatractylate-AAC and bongkrekate-AAC complexes reflect either conformational changes or lysines involved in the translocation channel through the protein. Fourth, the additional lysine labeled in the atractylate-carrier complex as compared to the carboxyatractylate-carrier complex is attributed to a cationic site in the binding center. These results are incorporated into a transmembrane folding model of the carrier.  相似文献   

11.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

12.
An investigation was performed to elucidate some unusual phenomena which had been observed with phosphoenolpyruvate (PEP) carboxylase [EC 4.1.1.31] of Escherichia coli. (i) Fructose 1,6-bisphosphate (Fru-1,6-P2) and GTP--the allosteric activators--were competitive with each other in the activation. (ii) Some analogs of PEP such as DL-2-phospholactate and 2-phosphoglycolate, which behaved as inhibitors in the presence of the activator (acetyl-CoA or dioxane), activated the enzyme to some extent in the absence of the activator. (iii) Ammonium sulfate deprived the enzyme of sensitivity to Fru-1,6-P2 or GTP but had no effect on the sensitivity to other effectors. It was found that the activation by the analogs was lost upon desensitization of the enzyme to Fru-1,6-P2 by reaction with 2,4,6-trinitrobenzene sulfonate. The activation by the analogs was not observed in the presence of 200 mM ammonium sulfate. In the presence of lower concentrations (0.1 mM) of PEP, ammonium sulfate activated the enzyme at concentrations less than 700 mM but had an inhibitory effect on the desensitized enzyme. These findings suggest that the unusual phenomena described above are a result of binding of the phosphate esters and sulfate ions with the Fru-1,6-P2 site of the enzyme or the active site depending on the reaction conditions.  相似文献   

13.
The photoaffinity inhibitor analog [2-3H]8-azido-AMP is specifically and covalently incorporated into Escherichia coli ADP-glucose synthetase. The reaction site(s) of [2-3H]8-azido-AMP with the enzyme was identified by reverse phase high performance liquid chromatography isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease-generated peptides containing the labeled analog. Three regions of modification, represented by six labeled peptides, accounted for over 85% of the covalently bound label. The major binding region of the azido analog, composed of residues 108-128, contained approximately 55% of the recovered covalently bound radioactivity. A single residue, Tyr-113, contained between 50 and 75% of the label found in the major binding region. This site is the same as the major binding region of the substrate site-specific probe, 8-azido-ADP-[14C]glucose (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). Conformational analysis of this region predicts that it is a part of a Rossmann fold, the supersecondary structure found in many adenine nucleotide-binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido-AMP were also identified by chemical characterization. One region, containing 20% of the covalently bound label, was composed of residues 11-68. This region contains Lys-38, the previously determined pyridoxal phosphate-modified allosteric activator site (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). The third minor region of modification, residues 222-254, contained approximately 15% of the covalently bound label. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure.  相似文献   

14.
D C Phelps  Y Hatefi 《Biochemistry》1985,24(14):3503-3507
Membrane-bound and purified mitochondrial energy-linked nicotinamide nucleotide transhydrogenase (TH) was inhibited by incubation with 5'-[p-(fluorosulfonyl)benzoyl]adenosine (FSBA), which is an analogue of TH substrates and their competitive inhibitors, namely, 5'-, 2'-, or 3'-AMP. NAD(H) and analogues, NADP, 5'-AMP, 5'-ADP, and 2'-AMP/3'-AMP mixed isomers protected TH against inhibition by FSBA, but NADPH accelerated the inhibition rate. In the absence of protective ligands or in the presence of NADP, FSBA appeared to modify the NAD(H) binding site of TH, because, unlike unmodified TH, the enzyme modified by FSBA under these conditions did not bind to an NAD-affinity column (NAD-agarose). However, when the NAD(H) binding site of TH was protected in the presence of 5'-AMP or NAD, then FSBA modification resulted in an inhibited enzyme that did bind to NAD-agarose, suggesting FSBA modification of the NADP(H) binding site or an essential residue outside the active site. [3H]FSBA was covalently bound to TH, and complete inhibition corresponded to the binding of about 0.5 mol of [3H]FSBA/mol of TH. Since purified TH is known to be dimeric in the isolated state, this binding stoichiometry suggests half-of-the-sites reactivity. A similar binding stoichiometry was found earlier for complete inhibition of TH by [14C]DCCD [Phelps, D.C., & Hatefi, Y. (1984) Biochemistry 23, 4475-4480]. The active site directed labeling of TH by radioactive FSBA should allow isolation of appropriate peptides for sequence analysis of the NAD(H) and possibly the NADP(H) binding domains.  相似文献   

15.
Treatment of isolated, latent chloroplast ATPase with pyridoxal-5-phosphate (pyridoxal-P) in presence of Mg2+ causes inhibition of dithiothreitol-activated plus heat-activated ATP hydrolysis. The amount of [3H]pyridoxal-P bound to chloroplast coupling factor 1 (CF1) was estimated to run up to 6 +/- 1 pyridoxal-P/enzyme, almost equally distributed between the alpha- and beta-subunits. Inactivation, however, is complete after binding of 1.5-2 pyridoxal-P/CF1, suggesting that two covalently modified lysines prevent the activation of the enzyme. ADP as well as ATP in presence of Mg2+ protects the enzyme against inactivation and concomittantly prevents incorporation of a part of the 3H-labeled pyridoxal-P into beta- and alpha-subunits. Phosphate prevents labeling of the alpha-subunit, but has only a minor effect on protection against inactivation. The data indicate a binding site at the interface between the alpha- and beta-subunits. Cleavage of the pyridoxal-P-labeled subunits with cyanogen bromide followed by sequence analysis of the labeled peptides led to the detection of Lys beta 359, Lys alpha 176 and Lys alpha 266, which are closely related to proposed nucleotide-binding regions of the alpha- and beta-subunits.  相似文献   

16.
Modification of gastric (H+ + K+)-ATPase with pyridoxal 5'-phosphate   总被引:2,自引:0,他引:2  
Pig gastric membrane vesicles enriched in (H+ + K+)-ATPase were covalently modified with pyridoxal 5'-phosphate (PLP). The modification resulted in inhibition of K+-dependent ATP hydrolysis, formation of phosphoenzyme and ATP-driven H+-uptake catalyzed by (H+ + K+)-ATPase. ATP, ADP, and adenyl-5'-yl imidodiphosphate were protective ligands, whereas Mg2+ and K+ were not. Specific PLP-binding of about 4.5 nmol/mg membrane protein was necessary for complete inhibition of the enzyme activity, indicating that the stoichiometry of PLP-binding to the enzyme was about 1:1. Limited proteolysis of the enzyme modified with [3H]PLP by trypsin suggests that PLP specifically modifies the lysine residue located in the 16-kDa fragment of the enzyme cleaved by trypsin. These results suggested that PLP binds to a specific lysine residue in the nucleotide-binding site or a region in its vicinity and inhibits the substrate binding or phosphorylation step of (H+ + K+)-ATPase.  相似文献   

17.
18.
Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.  相似文献   

19.
ADPglucose pyrophosphorylase (EC 2.7.7.27) from the cyanobacteriumSynechocystis PCC 6803 was desensitized to the effects of allosteric ligands by treatment with the arginine reagent, phenylglyoxal. Enzyme modification by phenylglyoxal resulted in inactivation when the enzyme was assayed under 3P-glycerate-activated conditions. There was little loss of the catalytic activity assayed in the absence of activator. Pi, 3P-glycerate, and pyridoxal-P were able to protect the enzyme from inactivation, whereas substrates gave minimal protection. The protective effect exhibited by Pi and 3P-glycerate was dependent on effector concentration. MgCl2 enhanced the protection afforded by 3P-glycerate. The enzyme partially modified by phenylglyoxal was more resistant to 3P-glycerate activation and Pi inhibition than the unmodified form.V max at saturating 3P-glycerate concentrations and the apparent affinity of the enzyme toward Pi were decreased upon phenylglyoxal modification. Incorporation of labeled phenylglyoxal into the enzyme was proportional to the loss of activity. Pi and 3P-glycerate nearly completely prevented incorporation of the reagent to the protein. Results suggest that one arginine residue per mol of enzyme subunit is involved in the binding of allosteric effector in the cyanobacterial ADPglucose pyrophosphorylase.  相似文献   

20.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号