首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Within the teleostean family Cyprinidae, diploid species occur with wide variation in genome size. There also exist species which were anciently tetraploid. 2. The quantitative changes of DNA content in the diploids are primarily due to differences in the amount of intermediately repeated DNA. DNA sequence composition of the ancient tetraploid genomes suggests that the species derived from diploid ancestors of small genome size. 3. The average base composition and the base compositional heterogeneity are similar in all the species examined.  相似文献   

2.
Damaged DNA bases are removed from mammalian genomes by base excision repair (BER). Single nucleotide BER requires several enzymatic activities, including DNA polymerase and 5',2'-deoxyribose-5-phosphate lyase. Both activities are intrinsic to four human DNA polymerases whose base substitution error rate during gap-filling DNA synthesis varies by more than 10,000-fold. This suggests that BER fidelity could vary over a wide range in an enzyme dependent manner. To investigate this possibility, here we describe an assay to measure the fidelity of BER reactions reconstituted with purified enzymes. When human uracil DNA glycosylase, AP endonuclease, DNA polymerase beta, and DNA ligase 1 replace uracil opposite template A or G, base substitution error rates are 相似文献   

3.
W. J. Karel  J. R. Gold 《Genetica》1987,74(3):181-187
Base compositions and differential melting rate profiles of genomic DNAs from twenty species of North American cyprinid fishes were generated via thermal denaturation. Base pair composition expressed as % GC values ranged among the twenty species from 36.1–41.3%. This range is considerably broader than that observed at comparable taxonomic levels in other vertebrate groups. Both the range and average difference in base pair composition between species in the diverse and rapidly evolving genus Notropis were considerably greater than those between species in other North American cyprinid genera. This may indicate that genomic changes at the level of base pair composition are frequent and possibly important events in cyprinid evolution. Compositional heterogeneity and asymmetry values among the twenty species were uniform and low, respectively, suggesting that most of the species lacked DNA components in their genomes which differed substantially from their main-band DNAs in base pair composition. The melting rate profiles revealed a prominent and distinct heavy or GC-rich DNA component in the genomes of three species belonging to the subgenus Cyprinella of Notropis. These and other data suggest that the heavy melting component may reflect a large, comparatively GC-rich family of highly repeated or satellite DNA sequences common to all three genomes.  相似文献   

4.
5.
DNA was isolated from the Indian honeybee (Apis cerana) and from the Italian and Anatolian races of the true honeybee (A. mellifera). The single-copy fraction of each DNA was labelled with iodine-125. Labelled single-stranded single-copy DNA from one species was allowed to associate with excess unlabelled single-stranded DNA from the other species. Hydroxylapatite chromatographic analysis of the heterohybrids showed that about 60% of the genomes are similar enough to form hybrids with a high degree of base pairing. About 40% of the genomes are so dissimilar that they cannot form hybrids stable under the experimental conditions of reassociation.  相似文献   

6.
I show that the recognition sequences of Type II restriction systems are correlated with the G + C content of the host bacterial DNA. Almost all restriction systems with G + C rich tetranucleotide recognition sequences are found in species with A + T rich genomes, whereas G + C rich hexanucleotide and octanucleotide recognition sequences are found almost exclusively in species with G + C rich genomes. Most hexanucleotide recognition sequences found in species with A + T rich genomes are A + T rich. This distribution eliminates a substantial proportion of the potential variance in the frequency of restriction recognition sequences in the host genomes. As a consequence, almost all restriction recognition sequences, including those eight base pairs in length (Not I and Sfi I), are predicted to occur with a frequency ranging from once every 300 to once every 5,000 base pairs in the host genome. Since the G + C content of bacteriophage DNA and of the host genome are also correlated, the data presented is evidence that most Type II "restriction systems" are indeed involved in phage restriction.  相似文献   

7.
One of the intriguing issues concerning the dynamics of plant genomes is the occurrence of intraspecific variation in nuclear DNA amount. The aim of this work was to assess the ranges of intraspecific, interspecific, and intergeneric variation in nuclear DNA content of diploid species of the tribe Triticeae (Poaceae) and to examine the relation between life form or habitat and genome size. Altogether, 438 plants representing 272 lines that belong to 22 species were analyzed. Nuclear DNA content was estimated by flow cytometry. Very small intraspecific variation in DNA amount was found between lines of Triticeae diploid species collected from different habitats or between different morphs. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various diploid species. Within the genus Aegilops, the 1C DNA amount ranged from 4.84 pg in A. caudata to 7.52 pg in A. sharonensis; among genera, the 1C DNA amount ranged from 4.18 pg in Heteranthelium piliferum to 9.45 pg in Secale montanum. No evidence was found for a smaller genome size in annual, self-pollinating species relative to perennial, cross-pollinating ones. Diploids that grow in the southern part of the group's distribution have larger genomes than those growing in other parts of the distribution. The contrast between the low variation at the intraspecific level and the high variation at the interspecific one suggests that changes in genome size originated in close temporal proximity to the speciation event, i.e., before, during, or immediately after it. The possible effects of sudden changes in genome size on speciation processes are discussed.  相似文献   

8.
C F Arias  S Lpez    R T Espejo 《Journal of virology》1986,57(3):1207-1209
The nucleotide sequences for several complementary DNA clones of the rotavirus genome were determined. When the sequences obtained from different clones for the same regions (16,000 bases) were compared, differences in eight base positions were observed. These discrepancies, approximately 1 in 2,000 bases, may be due to differences in individual RNA genomes resulting from multiple passages; infidelity of DNA synthesis in the cloning procedure; or both factors. Whatever the cause, this frequency of base substitution found in sequences of complementary DNA obtained from the same isolate should be considered when comparing DNA sequences obtained from independent isolates. On the other hand, the frequency of base changes observed suggests that the rotavirus genome is very conserved since the virus used for cDNA synthesis has been continuously passaged for 6 years without plaque purification.  相似文献   

9.
The concept of a 'minimal genome' has appeared as an attempt to answer the question what the minimum number of genes or minimum amount of DNA to support life is. Since bacteria are cells bearing the smallest genomes, it has been generally accepted that the minimal genome must belong to a bacterial species. Currently the most popular chromosome in studies on a minimal genome belongs to Mycoplasma genitalium, a parasite bacterium whose total genetic material is as small as approximately 580 kb. However, the problem is how we define life, and thus also a minimal genome. M. genitalium is a parasite and requires substances provided by its host. Therefore, if a genome of a parasite can be considered as a minimal genome, why not to consider genomes of bacteriophages? Going further, bacterial plasmids could be considered as minimal genomes. The smallest known DNA region playing the function of the origin of replication, which is sufficient for plasmid survival in natural habitats, is as short as 32 base pairs. However, such a small DNA molecule could not form a circular form and be replicated by cellular enzymes. These facts may lead to an ostensibly paradoxical conclusion that the size of a minimal genome is restricted by the physical size of a DNA molecule able to replicate rather, than by the amount of genetic information.  相似文献   

10.
The phylogenetic relationship between four basic genomes designated H, I, Xa, and Xu in the genus Hordeum was studied using a nuclear DNA sequence. The sequence, cMWG699, is single copy in the H. vulgare genome, and tightly linked to the vrs1 locus which controls two- and six-rowed spikes. DNA fragments homologous to cMWG699 were amplified from diploid Hordeum species and the nucleotide sequences were determined. A phylogeny based on both base substitutions and an insertion-deletion event showed that the H- and Xa-genome groups are positioned in one monophyletic group indicating that the Xa-genome taxa should be included in the H-genome group. The large H-genome group is highly homogeneous. The I and Xu genomes are distinctly separated from H and Xa, and form sister groups. Another phylogeny pattern based on data excluding the insertion-deletion gave a result that the Xa genome forms a sister group to the H-genome group. The difference between the H and Xa genomes was affected only by a single base insertion-deletion event, thus the H and Xa genomes are likely to be closely related. The I and Xu genomes were again distinctly separated from the H and Xa genomes.  相似文献   

11.
Phylogenetic analysis of mammalian species using mitochondrial protein genes has proved to be problematic in many previous studies. The high mutation rate of mitochondrial DNA and unusual base composition of several species has prompted us to conduct a detailed study of the composition of 69 mammalian mitochondrial genomes. Most major changes in base composition between lineages can be attributed to shifts between the proportions of C and T on the L-strand. These changes are significant at all codon positions and are shown to affect amino acid composition. Correlated changes in the base composition of the RNA loops and stems are also observed. Following up from previous studies, we investigate changes in the base composition of all 12 H-strand proteins and find that variability in proportions of C and T is correlated with location on the genome. Variation in base composition across genes and species is known to adversely affect the performance of phylogenetic inference methods. We have, therefore, developed a customized three-state general time-reversible DNA substitution model, implemented in the PHASE phylogenetic inference package, which lumps C and T into a composite pyrimidine state. We compare the phylogenetic tree obtained using the new three-state model with that obtained using a standard four-state model. Results using the three-state model are more congruent with recent studies using large sets of nuclear genes and help resolve some of the apparent conflicts between studies using nuclear and mitochondrial proteins.  相似文献   

12.
Junk DNA is still an enigmatic concept. Although junk DNA composition, abundance, and functionality are still contentious, its contribution to biological evolution is less questionable. Recently, I proposed that sexually restricted chromosomes such as Y and W, highly enriched in junk DNA elements, act as genomic tuning knobs indirectly causing a genome-wide increase in gene expression heterogeneity that boosts heterogametic individuals ability to endure environmental challenges and evolutionary capacitance, i.e., the store of genetic variation with no phenotypic effect. Sexually restricted chromosomes-based evolutionary capacitance might importantly contribute to metazoan sexual dimorphisms for dispersal and sex-biased gene expression dynamics. In this Synthesis, I hypothesize that large differences between species in the overall amount of junk DNA within their genomes also promote differences in junk DNA-based evolutionary capacitance that might be reflected in differences for dispersal and genetic diversification. I hypothesize that populations for species with junk DNA-impoverished genomes would show an enhanced ability to genetically diversify leading to a faster speciation rate even in the absence of geographic isolation when compared with populations for species with junk DNA-enriched genomes. To support junk DNA variation-based evolutionary capacitance effect on species genetic diversification, I analyzed the covariation of genome size as proxy for the overall amount of junk DNA in the genome and several genetic diversification measures obtained from interspecific crosses for the Drosophilidae family. The potential effect of junk DNA variation-based evolutionary capacitance for other elements of species dynamics such as extinction or the participation in grouped ecological structures is also briefly discussed.  相似文献   

13.
A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hemipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one another. We found that the correlation was positive and statistically significant (R2 = 0.73, P = 0.01; Rs = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.  相似文献   

14.
Summary New methods have been applied to the determination of single copy DNA sequence differences between the sea urchin speciesStrongylocentrotus purpuratus, S. franciscanus, S. drobachiensis, andLytechinus pictus. The thermal stability of interspecies DNA duplexes was measured in a solvent (2.4 M tetraethylammonium chloride) that suppresses the effect of base composition on melting temperature. The lengths of duplexes were measured after digestion with S1 nuclease and correction made for the effect of length on thermal stability. The degree of base substitution that has occurred in the single copy DNA during sea urchin evolution is significantly larger than indicated by earlier measurements. We estimate that 19% of the nucleotides of the single copy DNA are different in the genomes of the two sea urchin congeners,S. purpuratus, andS. franciscanus, which apparently diverged only 15 to 20 million years ago.  相似文献   

15.
Eukaryotic DNA polymerase delta (Pol delta) plays an essential role in replicating large nuclear genomes, a process that must be accurate to maintain stability over many generations. Based on kinetic studies of insertion of individual dNTPs opposite a template guanine, Pol delta is believed to have high selectivity for inserting correct nucleotides. This high selectivity, in conjunction with an intrinsic 3'-exonuclease activity, implies that Pol delta should have high base substitution fidelity. Here we demonstrate that the wild type Saccharomyces cerevisiae three-subunit Pol delta does indeed have high base substitution fidelity for the 12 possible base-base mismatches, producing on average less than 1.3 stable misincorporations/100,000 nucleotides polymerized. Measurements with exonuclease-deficient Pol delta confirm the high nucleotide selectivity of the polymerase and further indicate that proofreading enhances the base substitution fidelity of the wild type enzyme by at least 60-fold. However, Pol delta inefficiently proofreads single nucleotide deletion mismatches in homopolymeric runs, such that the error rate is 30 single nucleotide deletions/100,000 nucleotides polymerized. Moreover, wild type Pol delta frequently deletes larger numbers of nucleotides between distantly spaced direct repeats of three or more base pairs. Although wild type Pol delta and Pol epsilon both have high base substitution fidelity, Pol delta is much less accurate than Pol epsilon for deletions involving repetitive sequences. Thus, strand slippage during replication by wild type Pol delta may be a primary source of insertion and deletion mutagenesis in eukaryotic genomes.  相似文献   

16.
Faith JJ  Pollock DD 《Genetics》2003,165(2):735-745
Protein-coding genes in mitochondrial genomes have varying degrees of asymmetric skew in base frequencies at the third codon position. The variation in skew among genes appears to be caused by varying durations of time that the heavy strand spends in the mutagenic single-strand state during replication (D(ssH)). The primary data used to study skew have been the gene-by-gene base frequencies in individual taxa, which provide little information on exactly what kinds of mutations are responsible for the base frequency skew. To assess the contribution of individual mutation components to the ancestral vertebrate substitution pattern, here we analyze a large data set of complete vertebrate mitochondrial genomes in a phylogeny-based likelihood context. This also allows us to evaluate the change in skew continuously along the mitochondrial genome and to directly estimate relative substitution rates. Our results indicate that different types of mutation respond differently to the D(ssH) gradient. A primary role for hydrolytic deamination of cytosines in creating variance in skew among genes was not supported, but rather linearly increasing rates of mutation from adenine to hypoxanthine with D(ssH) appear to drive regional differences in skew. Substitutions due to hydrolytic deamination of cytosines, although common, appear to quickly saturate, possibly due to stabilization by the mitochondrial DNA single-strand-binding protein. These results should form the basis of more realistic models of DNA and protein evolution in mitochondria.  相似文献   

17.
Major satellite sequences are analysed in the three tenebrionid beetles Palorus cerylonoides, P. genalis, and P. ficicola, and compared with the ones from P. ratzeburgii and P. subdepressus reported elsewhere. All of them are A+T rich, pericentromerically located, and with lengths of about 150 bp, either in the form of monomers or formed by more complex repeating units. A preliminary phylogenetic analysis of Palorus species using the 3' end of the mitochondrial Cytochrome Oxidase I gene shows that the five Palorus species have been diverging for a considerable amount of evolutionary time, with the pair P. ratzeburgii and P. genalis being the most closely related. Only these two taxa showed some similarity between their respective high-copy-number satellite sequences, while other satellites are mutually unrelated and might have originated independently. However, all the satellites have in common tertiary structure induced by intrinsic DNA curvature, a characteristic which is conserved within the genus. Palorus major satellites were previously detected in the genomes of congeneric species as low-copy-number clusters (Mestrovi? et al., Mol. Biol. Evol. 15: 1062-1068. 1998). Given the divergences between the analysed species, the substitution rate deduced from high- and low-copy-number repeats is unexpectedly low. The presence of sequence-induced DNA curvature in all Palorus satellites and similar satellite DNAs in the species pair P. ratzeburgii and P. genalis suggest (i) that constraints are at the tertiary structure; and (ii) that the satellite DNA evolutionary turnover can be dependent on the history of the taxa under study, resulting in retention of similar satellites in related taxa.  相似文献   

18.
Our thesis is that the DNA composition and structure of genomes are selected in part by mutation bias (GC pressure) and in part by ecology. To illustrate this point, we compare and contrast the oligonucleotide composition and the mosaic structure in 36 complete genomes and in 27 long genomic sequences from archaea and eubacteria. We report the following findings (1) High-GC-content genomes show a large underrepresentation of short distances between G(n) and C(n) homopolymers with respect to distances between A(n) and T(n) homopolymers; we discuss selection versus mutation bias hypotheses. (2) The oligonucleotide compositions of the genomes of Neisseria (meningitidis and gonorrhoea), Helicobacter pylori and Rhodobacter capsulatus are more biased than the other sequenced genomes. (3) The genomes of free-living species or nonchronic pathogens show more mosaic-like structure than genomes of chronic pathogens or intracellular symbionts. (4) Genome mosaicity of intracellular parasites has a maximum corresponding to the average gene length; in the genomes of free-living and nonchronic pathogens the maximum occurs at larger length scales. This suggests that free-living species can incorporate large pieces of DNA from the environment, whereas for intracellular parasites there are recombination events between homologous genes. We discuss the consequences in terms of evolution of genome size. (5) Intracellular symbionts and obligate pathogens show small, but not zero, amount of chromosome mosaicity, suggesting that recombination events occur in these species.  相似文献   

19.
Mutualistic, maternally transmitted endosymbiotic microorganisms undergo severe population bottlenecks at each host generation, resulting in a reduction in effective population size (Ne). Previous studies of Buchnera, the primary endosymbiont of aphids, and of several other species of endosymbiotic bacteria have shown that these species exhibit an increase in the rate of substitution of slightly deleterious mutations, among other predicted effects of increased drift due to small Ne, such as reduced codon bias. However, these studies have been limited in taxonomic scope, and it was therefore not clear whether the increase in rate is a general feature of endosymbiont lineages. Here, we test the prediction that a long-term reduction in Ne causes an increase in substitution rate using DNA sequences of the 16S rRNA gene from 13 phylogenetically independent comparisons between taxonomically diverse endosymbiotic microorganisms and their free-living relatives. Maximum likelihood and distance-based methods both indicate a significant increase in substitution rate in a wide range of bacterial and fungal endosymbionts compared to closely related free-living lineages. We use the same data set to test whether 16S genes from endosymbionts display increased A + T content, another indicator of increased genetic drift, and find that there is no significant difference in base composition between endosymbiont and nonendosymbiont 16S genes. However, analysis of an additional data set of whole bacterial genomes demonstrates that, while host-dependent bacteria have significantly increased genomic A + T content, the base content of the 16S gene tends to vary less than that of the whole genome. It is possible that selection for stability of rRNA is strong enough to overcome the effects of drift toward increased A + T content in endosymbiont 16S genes, despite the reduced effective population sizes of these organisms.  相似文献   

20.
Large scale changes in nuclear DNA amount accompany the evolution of species of higher plants. Much of the nuclear DNA accrued during the evolution of species does not encode genetic information and is selectively neutral. Nonetheless, the pattern of distribution of the excess DNA within and between chromosome complements suggests that there are rigid constraints underlying evolutionary changes in genome organisation. A five-fold increase in the amount of nuclear DNA has occurred in the evolution ofLathyrus species. Not withstanding this massive DNA variation, species show consistently similar patterns in base sequence proliferation, divergence and DNA distribution within and between chromosome complements. Within chromosome complements, the excess DNA is distributed evenly in all chromosomes irrespective of the large differences in chromosome size and, between complements, DNA distribution is discontinuous; species cluster into DNA groups with remarkably regular intervals. Similar constraints govern the frequency and distribution of chiasmata in the chromosome complements. Between species chiasma frequency and nuclear DNA amounts are not correlated but within complements it is positively correlated with the amount of DNA contained in each chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号