首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of D-xylose, D-ribose, L-arabinose, and D-lyxose isomerases by various sugars was studied to determine the configuration necessary for induction. D-Xylose isomerase was only induced by D-xylose, whereas D-ribose isomerase was induced by D-ribose, L-rhamnose, and L-lyxose. L-arabinose isomerase was induced by L-arabinose, D-galactose, L-arabitol, D-fucose, and dulcitol, whereas D-lyxose isomerase was induced by D-lyxose, D-mannose, D-ribose, dulcitol, and myoinositol. Some compounds such as dulcitol, D-galactose, and D- or L-fucose which do not support growth are still able to serve as inducers for various pentose isomerases.  相似文献   

2.
D-Ribose isomerase, which catalyzes the conversion of D-ribose to D-ribulose, was purified from extracts of Mycobacterium smegmatis grown on D-ribose. The purified enzyme crystalized as hexagonal plates from a 44% solution of ammonium sulfate. The enzyme was homogenous by disc gel electrophoresis and ultracentrifugal analysis. The molecular weight of the enzyme was between 145,000 and 174,000 by sedimentation equilibrium analysis. Its sedimentation constant of 8.7 S indicates it is globular. On the basis of sodium dodecyl sulfate gel electrophoresis in the presence of Mn2+, the enzyme is probably composed of 4 identical subunits of molecular weight about 42,000 to 44,000. The enzyme was specific for sugars having the same configuration as D-ribose at carbon atoms 1 to 3. Thus, the enzyme could also utilize L-lyxose, D-allose, and L-rhamnose as substrates. The Km for D-ribose was 4 mM and for L-lyxose it was 5.3 mM. The enzyme required a divalent cation for activity with optimum activity being shown with Mn2+. the Km for the various cations was as follows: Mn2+, 1 times 10(-7) M, Co2+, 4 times 10(-7) M, and Mg2+, 1.8 times 10(-5) M. The pH optimum for the enzyme was 7.5 to 8.5. Polyols did not inhibit the enzyme to any great extent. The product of the reaction was identified as D-ribulose by thin layer chromatography and by preparation of the O-nitrophenylhydrazone derivative.  相似文献   

3.
Extracts of Pseudomonas citronellolis cells grown on glucose or gluconate possessed all the enzymes of the Entner-Doudoroff pathway. Gluconokinase and either or both 6-phosphogluconate dehydratase and KDPG aldolase were induced by growth on these substrates. Glucose and gluconate dehydrogenases and 6-phosphofructokinase were not detected. Thus catabolism of glucose proceeds via an inducible Entner-Doudoroff pathway. Metabolism of glyceraldehyde 3-phosphate apparently proceeded via glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase. These same enzymes plus triose phosphate isomerase were present in lactate-grown cells indicating that synthesis of triose phosphates from gluconeogenic substrates also occurs via this pathway. Extracts of lactate grown-cells possessed fructose diphosphatase and phosphohexoisomerase but apparently lacked fructose diphosphate aldolase thus indicating either the presence of an aldolase with unusual properties or requirements or an alternative pathway for the conversion of triose phosphate to fructose disphosphate. Cells contained two species of glyceraldehyde 3-phosphate dehydrogenase, one an NAD-dependent enzyme which predominated when the organism was grown on glycolytic substrates and the other, an NADP-dependent enzyme which predominated when the organism was grown on gluconeogenic substrates.  相似文献   

4.
A partially purified D-xylose isomerase has been isolated from cells of Streptomyces albus NRRL 5778 and some of its properties have been determined. D-Glucose, D-xylose, D-ribose, L-arabinose, and L-rhamnose served as substrates for the enzyme with respective Km values of 86, 93, 350, 153, and 312 mM and Vmax values measuring 1.23, 2.9, 2.63, 0.153, and 0.048 mumol min per mg of protein. The hexose D-allose was also isomerized. The enzyme was strongly activated by 1.0 mM Mg2+ but only partially activated by 1.0 mM Co2+. The respective Km values for Mg2+ and Co2+ were 0.3 and 0.003 mM. Mg2+ and Co2+ appear to have separate binding sites on the isomerase. These cations also protect the enzyme from thermal denaturation and from D-sorbitol inhibition. The optimum temperature for ketose formation was 70 to 80 C at pH values ranging from 7 to 9. D-Sorbitol acts as a competitive inhibitor with a Ki of 5.5 mM against D-glucose, D-xylose, and D-ribose. Induction experiments, Mg2+ activation, and D-sorbitol inhibition indicated that a single enzyme (D-xylose isomerase) was responsible for the isomerization of the pentoses, methyl pentose, and glucose.  相似文献   

5.
Phosphoglucose isomerase-deficient (pgi1) strains of Saccharomyces cerevisiae were studied for the production of D-ribose and ribitol from D-glucose via the intermediates of the pentose phosphate pathway. Overexpression of the genes coding for NAD+-specific glutamate dehydrogenase (GDH2) of S. cerevisiae or NADPH-utilising glyceraldehyde-3-phosphate dehydrogenase (gapB) of Bacillus subtilis enabled growth of the pgi1 mutant strains on D-glucose. Overexpression of the gene encoding sugar phosphate phosphatase (DOG1) of S. cerevisiae was needed for the production of D-ribose and ribitol; however, it reduced the growth of the pgi1 strains expressing GDH2 or gapB in the presence of higher D-glucose concentrations. The CEN.PK2-1D laboratory strain expressing both gapB and DOG1 produced approximately 0.4 g l−1 of D-ribose and ribitol when grown on 20 g l−1 (w/v) D-fructose with 4 g l−1 (w/v) D-glucose. Nuclear magnetic resonance measurements of the cells grown with 13C-labelled D-glucose showed that about 60% of the D-ribose produced was derived from D-glucose. Strains deficient in both phosphoglucose isomerase and transketolase activities, and expressing DOG1 and GDH2 tolerated only low D-glucose concentrations (≤2 g l−1 (w/v)), but produced 1 g l−1 (w/v) D-ribose and ribitol when grown on 20 g l−1 (w/v) D-fructose with 2 g l−1 (w/v) D-glucose.  相似文献   

6.
A substrate specificity study of the recombinant D-ribose-5-phosphate isomerase (RpiB) from Clostridium thermocellum was performed. Among all aldopentoses and aldohexoses, the RpiB enzyme displayed activity with L-talose, D-ribose, D-allose, L-allose, L-ribose, and D-talose in decreasing order. The products released were L-tagatose, D-ribulose, D-psicose, L-psicose, L-ribulose, and D-tagatose, respectively. The enzyme showed specificity for aldose substrates possessing hydroxyl groups oriented in the same direction at the C2, C3, and C4 positions. Molecular modeling of the enzyme suggests that the novel substrate specificity may be explained by substrate interactions with residues Tyr42, His98, and His9, which interact with the hydroxyl groups of C2, C3, and C4, respectively, oriented in the same direction. L-Talose and D-ribulose exhibited the highest activity among the aldoses and ketoses, respectively. Ribose 5-phosphate isomerase catalyzed the conversion of L-talose to L-tagatose with an 89% conversion yield after approximately 90 min, while D-ribulose was converted to D-ribose with a 38% conversion yield.  相似文献   

7.
The utilization of D-ribose by yeasts of the genus Pichia was examined with respect to aerobic growth, respiration and entry of ribose into the cells. Pichia etchellsii (CBS2011) could respire D-ribose, but not use it for aerobic growth. Pichia fermentans (CBS187) neither respired nor grew on D-ribose, though it entered the cells of this yeast either by simple diffusion, or possibly, by the D-glucose carrier, this having a very low affinity for D-ribose. Pichia pinus (CBS5097) respired and grew on D-ribose; kinetic evidence is given for this yeast having two ribose carriers, one inducible and the other constitutive.  相似文献   

8.
Selective inhibition of growth by pentitols was observed when Klebsiella aerogenes M-7 which could not utilize pentitols was grown on pentoses. D-Arabitol inhibited the growth on D-arabinose as a sole carbon source, but had no effect on the growth on L-arabinose, D-xylose, and D-ribose. Similarly, L-arabitol inhibited the growth on D-arabinose and L-arabinose, ribitol inhibited the growth on D-arabinose and L-arabinose, and xylitol inhibited the growth on D-xylose. From the following reasons, we postulated that the selective growth inhibition by pentitols was due to the competitive inhibition of pentose isomerase reaction by the cell by pentitols. (i) D-Arabinose transport activity was not inhibited by pentitols. (ii) Induction of D-arabinose and L-arabinose isomerases was not inhibited by D- and L-arabitol, respectively. (iii) The specificity of growth inhibition by pentitols was the same as that of competitive inhibition of pentose isomerases by pentitols.  相似文献   

9.
10.
The enzyme which catalyzes the conversion of D-erythrose 4-phosphate to D-erythrulose 4-phosphate and D-threose 4-phosphate has been purified to homogeneity from a crude extract of beef liver. Analysis of the purified enzyme by Sephadex G-100 gel filtration and sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed it to be a dimer of relative molecular mass 43 000. From the gas chromatography/mas spectrometry analyses of the enzymatic reaction products, it appeared that about 90% of the total amount of tetrose 4-phosphate was present as D-erythrulose 4-phosphate after equilibration. The purified enzyme, which is tentatively called 'erythrose-4-phosphate isomerase' had no significant isomerase activities on D-glyceraldehyde 3-phosphate, D-ribose 5-phosphate, D-glucose 6-phosphate and D-fructose 6-phosphate, but a strong D-ribulose-5-phosphate 3-epimerase activity was co-purified with the erythrose-4-phosphate isomerase activity through every step in the isolation. Both the erythrose-4-phosphate isomerase and D-ribulose-5-phosphate 3-epimerase activities were inactivated at the same rate at the elevated temperature, and also inhibited to the same extent by various inhibitors. It is likely, that both activities are catalyzed by the single enzyme protein.  相似文献   

11.
The D-xylose isomerase from T. aquaticus accepts, besides D-xylose, also D-glucose, and, with lower efficiency, D-ribose, and D-arabinose as alternative substrates. The activity of the enzyme is strictly dependent on divalent cations. Mn2+ is most effective in the D-xylose isomerase reaction and Co2+ in the D-glucose isomerization. Mg2+ is active in both reactions, Zn2+ only in the further one. The enzyme is strongly inhibited by Cu2+, and weakly by Ni2+, Fe2+, and Ca2+. A hyperbolic dependence of the reaction velocity of the D-xylose isomerase on the concentration of D-xylose xylose and of D-glucose was found, while biphasic saturation curves were obtained by variation of the metal ion concentrations. The D-glucose isomerization reaction shows normal behaviour with respect to the metal ions. A kinetic model was derived on the basis of the assumption of two binding sites for divalent cations, one cofactor site with higher affinity and a second, low affinity site, which modulates the activity of the enzyme.  相似文献   

12.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

13.
A new soil isolate of Lactobacillus sp. grown in Yamanaka medium under submerged conditions showed the presence of d-glucose, d-xylose and d-ribose isomerases in washed cell suspension and cell free extracts. d-Xylose isomerase (d-xylose ketol-isomerase, EC 5.3.1.5) and d-ribose isomerase (d-ribose ketol-isomerase, EC 5.3.1.20) activities reached a maximum in 48 h of growth and then declined. d-Glucose isomerase (d-glucose 6-phosphate isomerase, d-glucose-6-phosphate ketol-isomerase, EC 5.3.1.9) activity was maximum after 72 h and remained constant for ~120 h of growth. d-Glucose isomerase activity increased with the increase in number of generations of culture and reached a maximum in 5–6 generations, whereas d-xylose and d-ribose isomerase activities decreased. The washed and starved whole cells could be heat treated and immobilized on the rough surface of glass rods or glass slides using acetone treatment. The heat treated immobilized cells showed only the presence of d-glucose isomerase activity and showed no d-xylose and d-ribose isomerase activities. d-Glucose isomerase activity of heat treated immobilized cells was inhibited less by sorbitol, mannitol, sodium arsenate, cysteine and calcium ions than the free d-glucose isomerase activity in fresh untreated washed whole cells and cell free extracts. EDTA inhibition had the same effect for both forms. Ca2+inhibition could be reversed by adding Mg2+ions.  相似文献   

14.
Abstract Salmonella typhimurium was shown to use the gentisate pathway to metabolize m -hydroxybenzoate and gentisate. m -Hydroxybenzoate hydroxylase and gentisate 1,2-dioxygenase were induced by growth on either gentisate or m -hydroxybenzoate. These enzymes were not detected when the bacteria were grown with glucose or glucose and either m -hydroxybenzoate or gentisate. However, both enzymes were induced when the bacteria were grown on succinate with either substrate. The maleylpyruvate isomerase required reduced glutathione and was irreversibly inhibited by N -ethylmaleimide.  相似文献   

15.
Transketolase has been purified for the first time from human leukocytes, according to a new procedure which consists of three conventional steps. The enzyme was finally detached from CM-cellulose by specific elution with a D-xylulose-5-phosphate/D-ribose-5-phosphate mixture and the isolated product exhibited a specific activity of about 10 units/mg protein at 37 degrees C. Transketolase preparations are contamination-free, except for a slight residual activity of phosphohexose isomerase. Kinetic constants for D-xylulose 5-phosphate and D-ribose 5-phosphate were found to be 0.19 mM and 0.63 mM, respectively. Pure transketolase migrates on SDS/PAGE as a single band, with a molecular mass of about 66 kDa. The isoelectrophoretic heterogeneity of transketolase was assessed either by activity staining or immunovisualization with anti-transketolase antisera, previously induced in rabbits. These techniques yielded two practically overlapping patterns consisting of 6-8 distinct bands within a pI range of 6.5-8.5. Both pure and crude transketolase preparations showed a similar heterogeneous profile, thus confirming the stability of the enzyme throughout purification. The occurrence of multiple enzyme forms in fresh human white cells has also been established by the analysis of transketolase in isolated populations of either lymphocytes or polymorphonuclear leukocytes, from individual healthy subjects.  相似文献   

16.
Biddulphia aurita, a centric diatom, can grow on either nitrate, nitrite, or ammonia as its sole nitrogen, source. Cells remove ammonium nitrogen from the medium 2.3–2.4 times faster than either nitrate or nitrite nitrogen and, when grown for 24 hr in the ammonium medium, contain higher levels of non-protein nitrogen than cells grown in the nitrate or nitrite medium for the same period of time. The nitrogenous compounds in the nonprotein nitrogen fraction from cells grown in the nitrate, nitrite, or ammonium medium contain the same level of soluble-free amino nitrogen, combined amino nitrogen, and ammonium nitrogen. The high level of soluble nonprotein nitrogen in the medium of the cells grown in the ammonium medium is due to soluble amide nitrogen which represents 18% of the total soluble nitrogen present in these cells, whereas it represents only 2% in cells from the nitrite medium, and its level is negligible in cells from the nitrate medium. Cells grown in the nitrate medium have both nitrate- and nitrite-reductase activity. Cells grown in the nitrite medium have only nitrite-reductase activity in significant levels, while cells grown in the ammonium medium lack both enzymes.  相似文献   

17.
Embryonic haemopoietic stem cells can differentiate from mouse blastocysts grown in vitro. Mouse blastocysts were cultured for 3 or 4 days and the resultant cells were injected intravenously into lethally X-irradiated or genetically anaemic recipient mice. Blastocysts grown in vitro did not maintain normal embryonic morphology. The presence of donor haemoglobin and donor lymphocytic glucose phosphate isomerase in grafted recipients, demonstrates the presence of embryonic haemopoietic stem cells. Recipients of embryonic haemopoietic stem cells, obtained from growth in vitro, were haematologically stable with no evidence of neoplasia. Pluripotent embryonic cells, maintained on fibroblast feeder layers, were unable to colonize X-irradiated or genetically anaemic mice. Recipients of pluripotent cells died at the same time as saline-injected controls.  相似文献   

18.
Purification of a D-mannose isomerase from Mycobacterium smegmatis   总被引:4,自引:1,他引:3       下载免费PDF全文
An enzyme, d-mannose ketol isomerase, catalyzing the isomerization of d-mannose and d-fructose was purified approximately 60-fold from cells of Mycobacterium smegmatis grown on mannose as the sole carbon source. This enzyme was shown to catalyze the conversion of d-mannose and d-lyxose to ketoses. The ketose produced from mannose was identified as fructose by chemical and chromatographic methods. The reaction was shown to be reversible, the equilibrium ratio of fructose to mannose being approximately 65 to 35. The pH optimum was about 7.5, and the K(m) for mannose was estimated to be 7 x 10(-3)m. Mannose isomerase activity was greatest in cells grown on mannose, whereas cells grown on fructose had about 30% as much activity. Very low levels of activity were detected in cells grown on other substrates. There was an immediate increase in enzyme activity on transfer of cells from nutrient broth to a mannose mineral salts medium.  相似文献   

19.
When Cladosporium resinae is provided with n-hexadecane and glucose, n-hexadecane is used preferentially. Studies using [14C]glucose indicated that n-hexadecane did not inhibit glucose uptake but did retard oxidation of glucose to CO2 and assimilation of glucose carbon into trichloroacetic acid-insoluble material. Glucose could be recovered quantitatively from hydrocarbon-grown cells that had been transferred to glucose. Four enzymes that may be involved in glucose metabolism, hexokinase, glucose-6-phosphate dehydrogenase, glucose-phosphate isomerase, and succinate dehydrogenase, were not detected in cells grown on hexadecane but were present in cells grown on glucose. Addition of hexadecane to extracts of glucose-grown cells resulted in immediate loss of activity for each of the four enzymes, but two other enzymes did not directly involved in glucose metabolism, adenosine triphosphatase and alanine-ketoacid aminotransferase, were not inhibited by hexadecane in vitro. Cells grown on hexadecane and transferred to glucose metabolize intracellular hexadecane; after 1 day, activity of hexokinase, glucose-6-phosphate dehydrogenase, glucosephosphate isomerase, and succinate dehydrogenase could be detected and 22% of the intracellular hydrocarbon had been metabolized. Hexadecane-grown cells transferred to glucose plus cycloheximide showed the same level of activity of all the four enzymes as cells transferred to glucose alone. Thus, intracellular n-hexadecane or a metabolite of hexadecane can inthesis of those enzymes is not inhibited.  相似文献   

20.
SR 31747 is a novel immunosuppressant agent that arrests cell proliferation in the yeast Saccharomyces cerevisiae, SR 31747-treated cells accumulate the same aberrant sterols as those found in a mutant impaired in delta 8- delta 7-sterol isomerase. Sterol isomerase activity is also inhibited by SR 31747 in in vitro assays. Overexpression of the sterol isomerase-encoding gene, ERG2, confers enhanced SR resistance. Cells growing anaerobically on ergosterol-containing medium are not sensitive to SR. Disruption of the sterol isomerase-encoding gene is lethal in cells growing in the absence of exogenous ergosterol, except in SR-resistant mutants lacking either the SUR4 or the FEN1 gene product. The results suggest that sterol isomerase is the target of SR 31747 and that both the SUR4 and FEN1 gene products are required to mediate the proliferation arrest induced by ergosterol depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号