首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snf1 protein kinase containing the beta subunit Gal83 is localized in the cytoplasm during growth of Saccharomyces cerevisiae cells in abundant glucose and accumulates in the nucleus in response to glucose limitation. Nuclear localization of Snf1-Gal83 requires activation of the Snf1 catalytic subunit and depends on Gal83, but in the snf1Delta mutant, Gal83 exhibits glucose-regulated nuclear accumulation. We show here that the N terminus of Gal83, which is divergent from those of the other beta subunits, is necessary and sufficient for Snf1-independent, glucose-regulated localization. We identify a leucine-rich nuclear export signal in the N terminus and show that export depends on the Crm1 export receptor. We present evidence that catalytically inactive Snf1 promotes the cytoplasmic retention of Gal83 in glucose-grown cells through its interaction with the C terminus of Gal83; cytoplasmic localization of inactive Snf1-Gal83 maintains accessibility to the Snf1-activating kinases. Finally, we characterize the effects of glucose phosphorylation on localization. These studies define roles for Snf1 and Gal83 in determining the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase.  相似文献   

2.
The Snf1/AMP-activated protein kinase family has diverse roles in cellular responses to metabolic stress. In Saccharomyces cerevisiae, Snf1 protein kinase has three isoforms of the beta subunit that confer versatility on the kinase and that exhibit distinct patterns of subcellular localization. The Sip1 beta subunit resides in the cytosol in glucose-grown cells and relocalizes to the vacuolar membrane in response to carbon stress. We show that translation of Sip1 initiates at the second ATG of the open reading frame, yielding a potential site for N myristoylation, and that mutation of the critical glycine abolishes relocalization. We further show that the cyclic AMP-dependent protein kinase (protein kinase A [PKA]) pathway maintains the cytoplasmic localization of Sip1 in glucose-grown cells. The Snf1 catalytic subunit also exhibits aberrant localization to the vacuolar membrane in PKA-deficient cells, indicating that PKA regulates the localization of Snf1-Sip1 protein kinase. These findings establish a novel mechanism of regulation of Snf1 protein kinase by the PKA pathway.  相似文献   

3.
4.
Members of the Snf1/AMP-activated protein kinase family are activated under conditions of nutrient stress by a distinct upstream kinase. Here we present evidence that the yeast Pak1 kinase functions as a Snf1-activating kinase. Pak1 associates with the Snf1 kinase in vivo, and the association is greatly enhanced under glucose-limiting conditions when Snf1 is active. Snf1 kinase complexes isolated from pak1Delta mutant strains show reduced specific activity in vitro, and affinity-purified Pak1 kinase is able to activate the Snf1-dependent phosphorylation of Mig1 in vitro. Purified Pak1 kinase promotes the phosphorylation of the Snf1 polypeptide on threonine 210 within the activation loop in vitro, and an increased dosage of the PAK1 gene causes increased Snf1 threonine 210 phosphorylation in vivo. Deletion of the PAK1 gene does not produce a Snf phenotype, suggesting that one or more additional protein kinases is able to activate Snf1 in vivo. However, deletion of the PAK1 gene suppresses many of the phenotypes associated with the deletion of the REG1 gene, providing genetic evidence that Pak1 activates Snf1 in vivo. The closest mammalian homologue of yeast Pak1 kinase, calcium-calmodulin-dependent protein kinase kinase beta, may play a similar role in mammalian nutrient stress signaling.  相似文献   

5.
6.
7.
Nuclear receptors and their coactivators are key regulators of numerous physiological functions. GRIP1 (glucocorticoid receptor-interacting protein) is a member of the steroid receptor coactivator family. Here, we show that GRIP1 is regulated by cAMP-dependent protein kinase (PKA) that induces its degradation through the ubiquitin-proteasome pathway. GRIP1 was down-regulated in transiently transfected COS-1 cells after treatment with 8-para-chlorophenylthio-cAMP or forskolin and 3-isobutyl-1-methylxanthine and in adrenocortical Y1 cells after incubation with adrenocorticotropic hormone. Pulse-chase experiments with transiently transfected COS-1 cells demonstrated that the half-life of GRIP1 was markedly reduced in cells overexpressing the PKA catalytic subunit, suggesting that activation of PKA increases the turnover of GRIP1 protein. The proteasome inhibitors MG132 and lactacystin abolished the PKA-mediated degradation of GRIP1. Using ts20 cells, a temperature-sensitive cell line that contains a thermolabile ubiquitin-activating E1 enzyme, it was confirmed that PKA-mediated degradation of GRIP1 is dependent upon the ubiquitin-proteasome pathway. Coimmunoprecipitation studies of COS-1 cells transfected with expression vectors encoding GRIP1 and ubiquitin using anti-GRIP1 and anti-ubiquitin antibodies showed that the ubiquitination of GRIP1 was increased by overexpression of PKA. Finally, we show that PKA regulates the intracellular distribution pattern of green fluorescent protein-GRIP1 and stimulates recruitment of GRIP1 to subnuclear foci that are colocalized with the proteasome. Taken together, these data demonstrate that GRIP1 is ubiquitinated and degraded through activation of the PKA pathway. This may represent a novel regulatory mechanism whereby hormones down-regulate a nuclear receptor coactivator.  相似文献   

8.
The phosphorylation status of the Snf1 activation loop threonine is determined by changes in the rate of its dephosphorylation, catalyzed by the yeast PP1 phosphatase Glc7 in complex with the Reg1 protein. Previous studies have shown that Reg1 can associate with both Snf1 and Glc7, suggesting substrate binding as a mechanism for Reg1-mediated targeting of Glc7. In this study, the association of Reg1 with the three Snf1 isoforms was measured by two-hybrid analysis and coimmunoprecipitation. We found that Reg1 association with Snf1 occurred almost exclusively with the Gal83 isoform of the Snf1 complex. Nonetheless, Reg1 plays an important role in determining the phosphorylation status of all three Snf1 isoforms. We found that the rate of dephosphorylation for isoforms of Snf1 did not correlate with the amount of associated Reg1 protein. Functional chimeric β subunits containing residues from Gal83 and Sip2 were used to map the residues needed to promote Reg1 association with the N-terminal 150 residues of Gal83. The Gal83 isoform of Snf1 is the only isoform capable of nuclear localization. A Gal83-Sip2 chimera containing the first 150 residues of Gal83 was able to associate with the Reg1 protein but did not localize to the nucleus. Therefore, nuclear localization is not required for Reg1 association. Taken together, these data indicate that the ability of Reg1 to promote the dephosphorylation of Snf1 is not directly related to the strength of its association with the Snf1 complex.  相似文献   

9.
《Cellular signalling》2014,26(12):2633-2644
cGMP-dependent protein kinase I (PKGI) plays an important role in regulating how cGMP specifies vascular smooth muscle cell (SMC) phenotype. Although studies indicate that PKGI nuclear localization controls how cGMP regulates gene expression in SMC, information about the mechanisms that regulate PKGI nuclear compartmentation and its role in directly regulating cell phenotype is limited. Here we characterize a nuclear localization signal sequence (NLS) in PKGIγ, a proteolytically cleaved PKGI kinase fragment that translocates to the nucleus of SMC. Immuno-localization studies using cells expressing native and NLS-mutant PKGIγ, and treated with a small molecule nuclear transport inhibitor, indicated that PKGIγ encodes a constitutively active NLS that requires importin α and β for regulation of its compartmentation. Moreover, studies utilizing a genetically encoded nuclear phospho-CREB biosensor probe and fluorescence lifetime imaging microscopy demonstrated that this NLS controls PKGIγ nuclear function. In addition, although cytosolic PKGIγ-activity was observed to stimulate MAPK/ERK-mediated nuclear CREB signaling in SMC, NLS-mediated PKGIγ nuclear activity alone was determined to increase the expression of differentiation marker proteins in these cells. These results indicate that NLS-mediated nuclear PKGIγ localization plays an important role in how PKGI regulates vascular SMC phenotype.  相似文献   

10.
The C-terminal region of mitogen-activated protein kinase kinase-1 and 2 (MKK1 and MKK2) may function in regulating interactions with upstream kinases or the magnitude and duration of ERK mitogen-activated protein kinase activity. The MKK C-terminal region contains a proline-rich region that reportedly functions in regulating interactions with the Raf-1 kinase and ERK activity. In addition, phosphorylation sites in the C terminus of MKK1 have been suggested to either sustain or attenuate MKK1 activity. To further understand how phosphorylation at the C terminus of MKK1 and protein interactions regulate MKK1 function, we have generated several MKK1 C-terminal deletion mutants and examined their function in regulating MKK1 localization, ERK protein activation, and cell growth. A deletion of C-terminal amino acids encompassing two putative alpha-helices between residues 330 and 379 caused a re-distribution of mutant MKK1 proteins to membrane compartments. Immunofluorescence analysis of MKK1 mutants revealed a loss of homogenous cytosolic distribution that is typically observed with MKK1 wild type, suggesting this region regulates MKK1 cellular localization. In contrast, MKK1 C-terminal deletion mutants localized to various sized punctate regions that overlapped with lysosome compartments. ERK activation in response to constitutively active Raf-1 or growth factor stimulus was attenuated in cells expressing MKK1 C-terminal deletion mutants. This could be partly explained by the inability of Raf-1 to phosphorylate MKK1 C-terminal deletion mutants even though the phosphorylation sites were intact in these mutants. Finally, we show that cells expressing MKK1 C-terminal deletion mutants displayed characteristic patterns of apoptotic cell death and reduced cell proliferation. These findings identify a novel C-terminal region between amino acid residues 330 and 379 on MKK1 that is necessary for regulating the cytoplasmic distribution and subsequent ERK protein activation necessary for cell survival and viability.  相似文献   

11.
12.
13.
Raf kinase inhibitory protein (RKIP; also known as phosphatidylethanolamine-binding protein or PEBP) is a modulator of the Raf/MAPK signaling cascade and a suppressor of metastatic cancer. Here, we show that RKIP inhibits MAPK by regulating Raf-1 activation; specifically, RKIP acts subsequent to Raf-1 membrane recruitment, prevents association of Raf-1 and p21-activated kinase (PAK), and blocks phosphorylation of the Raf-1 kinase domain by PAK and Src family kinases. Mutation of the PAK and Src phosphorylation sites on Raf-1 to aspartate, a phosphate mimic, prevented RKIP association with or inhibition of Raf-1 signaling. Interestingly, although RKIP can interact with B-Raf, RKIP depletion had no effect on activation of B-Raf. Because c-Raf-1 and B-Raf are both required for maximal MAPK stimulation by epidermal growth factor in neuronal and epithelial cell lines, we determined whether RKIP significantly affects MAPK signaling. In fact, RKIP depletion increased not only the amplitude but also the sensitivity of MAPK and DNA synthesis to epidermal growth factor stimulation by up to an order of magnitude. These results indicate that selective modulation of c-Raf-1 but not B-Raf activation by RKIP can limit the dynamic range of the MAPK signaling response to growth factors and may play a critical role in growth and development.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic (alpha) subunit, and two regulatory (beta and gamma) subunits. Here we report the crystal structure at 2.2A resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.  相似文献   

15.
The Snf1 protein kinase plays a central role in the response to glucose starvation in the yeast Saccharomyces cerevisiae. Previously, we showed that two-hybrid interaction between Snf1 and its activating subunit, Snf4, is inhibited by high levels of glucose. These findings, together with biochemical evidence that Snf1 and Snf4 remain associated in cells grown in glucose, suggested that another protein (or proteins) anchors Snf1 and Snf4 into a complex. Here, we examine the possibility that a family of proteins, comprising Sip1, Sip2, and Gal83, serves this purpose. We first show that the fraction of cellular Snf4 protein that is complexed with Snf1 is reduced in a sip1delta sip2delta gal83delta triple mutant. We then present evidence that Sip1, Sip2, and Gal83 each interact independently with both Snf1 and Snf4 via distinct domains. A conserved internal region binds to the Snf1 regulatory domain, and the conserved C-terminal ASC domain binds to Snf4. Interactions were mapped by using the two-hybrid system and were confirmed by in vitro binding studies. These findings indicate that the Sip1/Sip2/Gal83 family anchors Snf1 and Snf4 into a complex. Finally, the interaction of the yeast Sip2 protein with a plant Snf1 homolog suggests that this function is conserved in plants.  相似文献   

16.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation and is highly conserved from yeast to mammals. The upstream kinases are also functionally conserved, and the AMPK kinases LKB1 and Ca2+/calmodulin-dependent protein kinase kinase activate Snf1 in mutant yeast cells lacking the native Snf1-activating kinases, Sak1, Tos3, and Elm1. Here, we exploited the yeast genetic system to identify members of the mammalian AMPK kinase family by their function as Snf1-activating kinases. A mouse embryo cDNA library in a yeast expression vector was used to transform sak1Delta tos3Delta elm1Delta yeast cells. Selection for a Snf+ growth phenotype yielded cDNA plasmids expressing LKB1, Ca2+/calmodulin-dependent protein kinase kinase, and transforming growth factor-beta-activated kinase (TAK1), a member of the mitogen-activated protein kinase kinase kinase family. We present genetic and biochemical evidence that TAK1 activates Snf1 protein kinase in vivo and in vitro. We further show that recombinant TAK1, fused to the activation domain of its binding partner TAB1, phosphorylates Thr-172 in the activation loop of the AMPK catalytic domain. Finally, expression of TAK1 and TAB1 in HeLa cells or treatment of cells with cytokines stimulated phosphorylation of Thr-172 of AMPK. These findings indicate that TAK1 is a functional member of the Snf1/AMPK kinase family and support TAK1 as a candidate for an authentic AMPK kinase in mammalian cells.  相似文献   

17.
In the budding yeast Saccharomyces cerevisiae, four members of the importin-beta family of nuclear carriers, Xpo1p/Crm1p, Cse1p, Msn5p and Los1p, function as exporters of protein and tRNA. Under normal growth conditions GFP-tagged exporters are predominantly associated with nuclei. The presence of Snf1 kinase, a key regulator of cell growth and a metabolic sensor, controls the localization of GFP-exporters. Additional glucose-dependent, but Snf1-independent, mechanisms regulate carrier distribution and a switch from fermentable to non-fermentable carbon sources relocates all of the carriers, suggesting a link to the nutritional status of the cell. Moreover, stress controls the proper localization of GFP-exporters, which mislocalize upon exposure to heat, ethanol and starvation. Stress may activate the MAPK cell integrity cascade, and we tested the role of this pathway in exporter localization. Under non-stress conditions, the proper distribution of GFP-Cse1p and Xpo1p/Crm1p-GFP requires kinases of the cell integrity cascade. By contrast, Msn5p-GFP and Los1p-GFP rely on the MAPK module to relocate to the cytoplasm when cells are stressed with ethanol. Our results indicate that the association of nuclear exporters with nuclei is controlled by multiple mechanisms that are organized in a hierarchical fashion and linked to the physiological state of the cell.  相似文献   

18.
The mRNA-binding protein Ssd1 is a substrate for the Saccharomyces cerevisiae LATS/NDR orthologue Cbk1, which controls polarized growth, cell separation, and cell integrity. We discovered that most Ssd1 localizes diffusely within the cytoplasm, but some transiently accumulates at sites of polarized growth. Cbk1 inhibition and cellular stress cause Ssd1 to redistribute to mRNA processing bodies (P-bodies) and stress granules, which are known to repress translation. Ssd1 recruitment to P-bodies is independent of mRNA binding and is promoted by the removal of Cbk1 phosphorylation sites. SSD1 deletion severely impairs the asymmetric localization of the Ssd1-associated mRNA, SRL1. Expression of phosphomimetic Ssd1 promotes polarized localization of SRL1 mRNA, whereas phosphorylation-deficient Ssd1 causes constitutive localization of SRL1 mRNA to P-bodies and causes cellular lysis. These data support the model that Cbk1-mediated phosphorylation of Ssd1 promotes the cortical localization of Ssd1-mRNA complexes, whereas Cbk1 inhibition, cellular stress, and Ssd1 dephosphorylation promote Ssd1-mRNA interactions with P-bodies and stress granules, leading to translational repression.  相似文献   

19.
Recent studies highlight the existence of a nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PC as a source of second messengers and, particularly, nuclear localization of PC-specific phospholipase D (PLD). In the present study we have identified the nuclear localization sequence (NLS) of PLD1 whose mutation abolished its nuclear import. Recently, we reported that caspase-mediated cleavage of PLD1 generates the N-terminal fragment (NF-PLD1) and C-terminal fragment (CF-PLD1). Here we show that CF-PLD1 but not NF-PLD1, is exclusively imported into the nucleus via its functional NLS, whereas only some portions of intact PLD1 were localized into the nucleus. The NLS of intact PLD1 or CF-PLD1 is required for interaction with importin-β, which is known to mediate nuclear import. The amount of intact PLD1 or CF-PLD1 translocated into nucleus is correlated with its binding affinity with importin-β. Ultimately, nuclear localization of intact PLD1 but not CF-PLD1 mediates the activation of nuclear protein kinase Cα and extracellular signal-regulated kinase signaling pathways. Taken together, we propose that nuclear localization of PLD1 via the NLS and its interaction with importin-β may provide new insights on the functional role of nuclear PLD1 signaling.  相似文献   

20.
Endothelial cells are normally non-motile and quiescent; however, endothelial cells will become permeable and invade and proliferate to form new blood vessels (angiogenesis) in response to wounding, cancer, diabetic retinopathy, age-related macular degeneration, or rheumatoid arthritis. p21-activated kinase (Pak), an effector for the Rho GTPases Rac and Cdc42, is required for angiogenesis and regulates endothelial cell permeability and motility. Although Pak is primarily activated by Rac and Cdc42, there are additional proteins that regulate Pak activity and localization, including three AGC protein kinase family members, Akt-1, PDK-1, and cAMP-dependent protein kinase. We describe phosphorylation and regulation of Pak localization by a fourth AGC kinase family member, cGMP-dependent protein kinase (PKG). Using in vitro mapping, a phosphospecific antibody, co-transfection assays, and untransfected bovine aortic endothelial cells we determined that PKG phosphorylates Pak at serine 21. Phosphorylation was accompanied by changes in proteins associated with Pak. The adaptor protein Nck was released, whereas a novel complex with vasodilator-stimulated phosphoprotein was stimulated. Furthermore Ser-21 phosphorylation of Pak appears to be important for regulation of cell morphology. In both human umbilical vein endothelial cells and HeLa cells, activation of PKG in the presence of Pak stimulated tail retraction and cell polarization. However, in cells expressing S21A mutant Pak1, PKG activation or treatment with a peptide that blocks Nck/Pak binding caused aberrant cell morphology, blocked cell retraction, and mislocalized Pak, producing uropod (tail-like) structures. These data suggest that PKG regulates Pak and that the interaction plays a role in tail retraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号