首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Embryonic expression of nm23 during mouse organogenesis.   总被引:8,自引:0,他引:8  
  相似文献   

4.
Plasma glutathione peroxidase (pGPx) is an extracellular antioxidative selenoenzyme which has been detected in various adult tissues, but little is known about the expression and distribution of pGPx during embryogenesis. To investigate the expression patterns of pGPx during embryogenesis, we performed quantitative real-time PCR, in situ hybridization, Western blot, and immunohistochemistry analyses in whole embryos or each developing organ of mice on embryonic days (E)7.5–18.5. In whole embryos of E7.5–8.5, pGPx mRNA was more typically expressed in extra-embryonic tissues including ectoplacental cone, trophectoderm, and decidual cells than in embryos. However, after E9.5, pGPx mRNA and protein levels were increased in the embryos with differentiation and growth, but trended to gradually decrease in the extra-embryonic tissues until E18.5. In sectioned embryonic tissues on E13.5–18.5, pGPx mRNA and protein were mainly expressed in the developing nervous tissues, the sensory organs, and the epithelia of lung, skin, and intestine, the heart and artery, and the kidney. In particular, pGPx immunoreactivity was very strong in the developing liver. These results indicate that pGPx is spatio-temporally expressed in various embryonic organs as well as extra-embryonic tissues, suggesting that pGPx may function to protect the embryos against endogenous and exogenous reactive oxygen species during organogenesis.  相似文献   

5.
6.
The balance between reactive oxygen species production and antioxidant defense enzymes in embryos is necessary for normal embryogenesis. To determine the dynamic expression profile of manganese superoxide dismutase (MnSOD) in embryos, which is an essential antioxidant enzyme in embryonic organogenesis, the expression level and distribution of MnSOD mRNA and protein were investigated in mouse embryos, as well as extraembryonic tissues on embryonic days (EDs) 7.5-18.5. MnSOD mRNA levels were remarkably high in extraembryonic tissues rather than in embryos during these periods. MnSOD protein levels were also higher in extraembryonic tissues than in embryos until ED 16.5, but the opposite trend was found after ED 17.5. MnSOD mRNA was observed in the chorion, allantois, amnion, ectoderm, ectoplacental cone and neural fold at ED 7.5 and in the neural fold, gut, ectoplacental cone, outer extraembryonic membranes and primitive heart at ED 8.5. After removing the extraembryonic tissues, the prominent expression of MnSOD mRNA in embryos was seen in the sensory organs, central nervous system and limbs on EDs 9.5-12.5 and in the ganglia, spinal cord, sensory organ epithelia, lung, blood cells and vessels, intestinal and skin epithelia, hepatocytes and thymus on EDs 13.5-18.5. Strong MnSOD immunoreactivity was observed in the choroid plexus, ganglia, myocardium, blood vessels, heapatocytes, pancreatic acinus, osteogenic tissues, brown adipose tissue, thymus and skin. These findings suggest that MnSOD is mainly produced from extraembryonic tissues and then may be utilized to protect the embryos against endogenous or exogenous oxidative stress during embryogenesis.  相似文献   

7.
8.
Tissue-specific expression of mouse alpha-amylase genes   总被引:45,自引:0,他引:45  
Ribosomal protein S4 isolated from the small (30 S) subunits of Escherichia coli ribosomes has been studied by a complex of physical methods such as sedimentation, ultraviolet absorption and circular dichroism spectroscopy, proton magnetic resonance spectroscopy, scanning microcalorimetry and neutron scattering. It has been shown that protein S4 exists in solution in a monomeric form. It is characterized by a high content of secondary structure including both α-helices (43%) and β-form (about 30%). The protein S4 molecules possess a well-developed tertiary structure which melts in a co-operative manner. The compactness of the molecules has been found to be very high (radius of gyration, Rg = 18 ± 2 A?), corresponding to that of standard compact globular proteins. The compactness of protein S4 does not change as a result of its interaction with the specifically binding 13 S fragment of the ribosomal 16 8 RNA; this suggests that serious conformational changes in protein S4 upon 30 S subunit assembly are unlikely and that the protein is compact within the ribosome.  相似文献   

9.
We have studied the pattern of expression of the Q10 gene, a H-2 class-I gene located in the major histocompatibility complex which encodes a soluble class-I molecule, in the mid-gestation mouse embryo, and compared it to those of two other class-I genes, namely Kd and 37, the latter gene located in the thymus leukemia region. We found that the steady-state amount of these different mRNAs gradually increased from day 13 to day 18. By comparison with the level of expression of these genes in adult liver, the increase during gestation was fairly more marked for Q10 mRNA than for the others. Furthermore, we found that the Q10 gene is transiently expressed in the endoderm layer of the visceral yolk sac and in the fetal heart. Expression in the latter tissue decreases abruptly while increasing in the liver. It has been proposed that the Q10 protein is involved in immune tolerance. However, the time course of expression of Q10 mRNA and its tissue distribution during embryogenesis suggest that the Q10 protein could play a role in the differentiation of hematopoietic stem cells.  相似文献   

10.
The signaling activity of Platelet-derived growth factors A and B (PDGF-A and PDGF-B) that is mediated through the two receptor kinases, PDGFR-alpha and PDGFR-beta has been shown to be critical for the development of the cardiovascular organs, the kidney, the lung and the central nervous system. During the cloning of genes for VEGF related proteins, we isolated a mouse cDNA that can encode for a protein of 345 amino acids. A comparison of the amino acid sequence reveals that this predicted gene product displays 95% identity to human PDGF-C. The mouse Pdgfc gene maps to a region of chromosome 17 that is syntenic to human chromosome 6p21.3 In E9. 5-E15.5 mouse embryo, Pdgfc is widely expressed in the surface ectoderm and later in the germinal layer of the skin, the olfactory and otic placode and their derivatives and the lining of the oral cavity. In the gut and visceral organs, such as the lung and the kidney, Pdgfc mRNA is first expressed in the endodermal epithelium and later in mesenchymal tissues associated with the endodermal structures. Similar to other PDGFs, Pdgfc is widely expressed in mesenchymal precursors and the myoblast of the smooth and skeletal muscles. Contrary to PDGF-A, Pdgfc is not expressed in the central nervous system, except in the cerebellum, and neurogenic derivatives of the neural crest cells. Pdgfc is also absent from the heart and the vascular endothelium  相似文献   

11.
 The role of Fas and Fas ligand (Fas-L) in the apoptotic cell death process in cisplatin (CP)-treated human proximal tubular epithelial cells (PTECs) was examined. The human PTECs were treated with various concentrations (20–80 μM) of CP for 24 h, and the incidence of apoptosis in CP-treated cells was assessed by trypan blue staining, propidium iodide staining, in situ end labeling, and electron microscopy. The expression of Fas and Fas-L was detected by immunofluorescence microscopy. The results showed that: (1) CP-treatment resulted in a decreased number of live human PTECs and an increased number of dead cells, (2) CP-treated human PTECs showed an increased rate of apoptosis with its typical morphological features, and (3) expression of both Fas and Fas-L was upregulated in CP-treated human PTECs. These results indicate that CP treatment induces apoptosis in human PTECs and the activation of the Fas/Fas-L system may play an active role in the induction of the apoptotic cell death process. Accepted: 13 January 1999  相似文献   

12.
13.
The N-myc proto-oncogene is expressed during embryogenesis, suggesting that it plays a role in normal development. Since the myc-family oncogenes have been implicated in the control of cell growth, the embryonic expression may reflect rapid proliferation known to occur in development. Alternatively, N-myc expression may be involved in specific differentiation stages. In many embryonic tissues, early and late differentiation events occur in different locations. By in situ hybridization of tissue sections, we now demonstrate a restricted expression of N-myc mRNA to a few tissues and to areas where the first differentiation stages occur. N-myc expression was most strongly expressed in the developing kidney, hair follicles, and in various parts of the central nervous system. In these tissues, expression was restricted to a few cell lineages. In all lineages, expression was confined to early differentiation stages, and, at onset of overt differentiation, the level of expression decreased dramatically. Several rapidly proliferating tissues showed very little, if any, N-myc expression. In the brain, post-mitotic but not yet differentiated cells expressed high levels of N-myc mRNA. Therefore, N-myc expression is not a simple marker for proliferation in the embryo. Rather, N-myc expression seems to be a feature of early differentiation stages of some cell lineages in kidney, brain, and hair follicles, regardless of the proliferative status of the cell. The results raise the possibility that N-myc may participate in the control of these early differentiation events.  相似文献   

14.
15.
Notch gene expression during pancreatic organogenesis   总被引:5,自引:0,他引:5  
  相似文献   

16.
Early experiments with cells in culture and recent targeting experiments have confirmed that the mesenchyme-derived growth factor hepatocyte growth factor/scatter factor (HGF/SF) is a paracrine agent that regulates the development of several epithelial and myogenic precursor cells during organogenesis. Here, we report the expression pattern of HGF/SF and its receptor, the product of the proto-oncogene c-met, during gastrulation and early organogenesis in mouse embryo. During gastrulation, the expression of HGF/SF and c-met overlaps. Initially the two genes are expressed in the endoderm and in the mesoderm along the rostro-intermediate part of the primitive streak and, later, in the node and in the notochord. Neither HGF/SF nor c-met is expressed in the ectodermal layer throughout gastrulation. During early organogenesis, overlapping expression of HGF/SF and c-met is found in heart, condensing somites and neural crest cells. However, a second and distinct pattern of expression, characterized by the presence of the ligand in mesenchymal tissues and the receptor in the surrounding ectoderm, is seen in the branchial arches and in the limb buds. At 13 days postcoitum (d.p.c.), only this second pattern of expression is observed in differentiated somites and several major organs (i.e., lungs, liver, and gut. The expression of the HGF/SF and c-met genes throughout embryogenesis suggests a shift from an autocrine to a paracrine signaling system. The shift takes place in early organogenesis and implies different roles of HGF/SF in development. During gastrulation, HGF/SF may affect the fate of migrating mesodermal cells and may play a role in axis determination, whereas during organogenesis, the expression patterns of HGF/SF and its receptor reflect the recently established roles in the growth of certain epithelia and the migration of specific myogenic precursor cells. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
Cell–cell communication is critical for regulating embryonic organ growth and differentiation. The Bone Morphogenetic Protein (BMP) family of transforming growth factor β (TGFβ) molecules represents one class of such cell–cell signaling molecules that regulate the morphogenesis of several organs. Due to high redundancy between the myriad BMP ligands and receptors in certain tissues, it has been challenging to address the role of BMP signaling using targeting of single Bmp genes in mouse models. Here, we present a detailed study of the developmental expression profiles of three BMP ligands (Bmp2, Bmp4, Bmp7) and three BMP receptors (Bmpr1a, Bmpr1b, and BmprII), as well as their molecular antagonist (noggin), in the early embryo during the initial steps of murine organogenesis. In particular, we focus on the expression of Bmp family members in the first organs and tissues that take shape during embryogenesis, such as the heart, vascular system, lungs, liver, stomach, nervous system, somites and limbs. Using in situ hybridization, we identify domains where ligand(s) and receptor(s) are either singly or co-expressed in specific tissues. In addition, we identify a previously unnoticed asymmetric expression of Bmp4 in the gut mesogastrium, which initiates just prior to gut turning and the establishment of organ asymmetry in the gastrointestinal tract. Our studies will aid in the future design and/or interpretation of targeted deletion of individual Bmp or Bmpr genes, since this study identifies organs and tissues where redundant BMP signaling pathways are likely to occur.  相似文献   

20.
Expression patterns of nm23 genes during mouse organogenesis   总被引:2,自引:0,他引:2  
Nucleoside di-phosphate kinase enzyme (NDPK) isoforms, encoded by the nm23 family of genes, may be involved in various cellular differentiation and proliferation processes. We have therefore analyzed the expression of nm23-M1, -M2, -M3, and -M4 during embryonic mouse development. In situ hybridization data has revealed the differential expression of nm23 mRNA during organogenesis. Whereas nm23-M1 and -M3 are preferentially expressed in the nervous and sensory systems, nm23-M2 mRNA is found ubiquitously. Irrespective of the developmental state studied, nm23-M4 mRNA is only expressed at low levels in a few embryonic organs. In the cerebellum and cerebral cortex, nm23-M1, -M2, and -M3 are present in the neuronal differentiation layer, whereas nm23-M4 mRNA is distributed in the proliferating layer. Thus, nm23 mRNA is differentially expressed, and the diverse NDPK isoforms are sequentially involved in various developmental processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号