首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phagocytosis of apoptotic cells by macrophages, known as efferocytosis, is a critical process in the resolution of inflammation. High mobility group box 1 (HMGB1) protein was first described as a nuclear nonhistone DNA-binding protein, but is now known to be secreted by activated cells during inflammatory processes, where it participates in diminishing efferocytosis. Although HMGB1 is known to undergo modification when secreted, the effect of such modifications on the inhibitory actions of HMGB1 during efferocytosis have not been reported. In the present studies, we found that HMGB1 secreted by Toll-like receptor 4 (TLR4) stimulated cells is highly poly(ADP-ribosyl)ated (PARylated). Gene deletion of poly(ADP)-ribose polymerase (PARP)-1 or pharmacological inhibition of PARP-1 decreased the release of HMGB1 from the nucleus to the extracellular milieu after TLR4 engagement. Preincubation of macrophages or apoptotic cells with HMGB1 diminished efferocytosis through mechanisms involving binding of HMGB1 to phosphatidylserine on apoptotic cells and to the receptor for advanced glycation end products (RAGE) on macrophages. Preincubation of either macrophages or apoptotic cells with PARylated HMGB1 inhibited efferocytosis to a greater degree than exposure to unmodified HMGB1, and PARylated HMGB1 demonstrated higher affinity for phosphatidylserine and RAGE than unmodified HMGB1. PARylated HMGB1 had a greater inhibitory effect on Ras-related C3 botulinum toxin substrate 1 (Rac-1) activation in macrophages during the uptake of apoptotic cells than unmodified HMGB1. The present results, showing that PARylation of HMGB1 enhances its ability to inhibit efferocytosis, provide a novel mechanism by which PARP-1 may promote inflammation.  相似文献   

2.
Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes   总被引:2,自引:0,他引:2  
The mobilization of dendritic cells (DCs) from peripheral tissues is critical for the establishment of T cell-dependent immune responses or tolerance, because the physical interaction of DCs with naive T cells takes place in the T cell areas of lymph nodes. The autocrine/paracrine release of the high mobility group box 1 (HMGB1) nuclear protein by DCs controls the outcome of the DC-T cell interaction, influencing the priming/Th1 polarization of naive T cells. We herein present evidence that the receptor for advanced glycation end products (RAGE), a multiligand member of the Ig superfamily of cell-surface molecules that acts as a receptor for HMGB1, plays a nonredundant role in DC homing to lymph nodes. We used noninvasive imaging by magnetic resonance and immunohistochemistry to track DCs after s.c. injection in the footpad of wild-type(+/+) or RAGE(-/-) mice. Maturing DCs expressing RAGE effectively migrated in both conditions. In contrast, RAGE(-/-) DCs failed to reach the draining popliteal lymph nodes of +/+ and -/- mice, indicating that the integrity of RAGE is required for DC mobilization. Thus the HMGB1-RAGE pathway is a checkpoint in DC maturation and function and a candidate for targeted therapies.  相似文献   

3.
The Receptor for Advanced Glycation Endproducts (RAGE) is a scavenger ligand that binds glycated endproducts as well as molecules released during cell death such as S100b and HMGB1. RAGE is expressed on antigen presenting cells where it may participate in activation of innate immune responses but its role in adaptive human immune responses has not been described. We have found that RAGE is expressed intracellularly in human T cells following TCR activation but constitutively on T cells from patients with diabetes. The levels of RAGE on T cells from patients with diabetes are not related to the level of glucose control. It co-localizes to the endosomes. Its expression increases in activated T cells from healthy control subjects but bystander cells also express RAGE after stimulation of the antigen specific T cells. RAGE ligands enhance RAGE expression. In patients with T1D, the level of RAGE expression decreases with T cell activation. RAGE+ T cells express higher levels of IL-17A, CD107a, and IL-5 than RAGE- cells from the same individual with T1D. Our studies have identified the expression of RAGE on adaptive immune cells and a role for this receptor and its ligands in modulating human immune responses.  相似文献   

4.
HMGB1 expression and release by bone cells   总被引:5,自引:0,他引:5  
Immune and bone cells are functionally coupled by pro-inflammatory cytokine intercellular signaling networks common to both tissues and their crosstalk may contribute to the etiologies of some immune-associated bone pathologies. For example, the receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)/receptor activator of NF-kappaB (RANK) signaling axis plays a critical role in dendritic cell (DC) function as well as bone remodeling. The expression of RANKL by immune cells may contribute to bone loss in periodontitis, arthritis, and multiple myeloma. A recent discovery reveals that DCs release the chromatin protein high mobility group box 1 (HMGB1) as a potent immunomodulatory cytokine mediating the interaction between DCs and T-cells, via HMGB1 binding to the membrane receptor for advanced glycation end products (RAGE). To determine whether osteoblasts or osteoclasts express and/or release HMGB1 into the bone microenvironment, we analyzed tissue, cells, and culture media for the presence of this molecule. Our immunohistochemical and immunocytochemical analyses demonstrate HMGB1 expression in primary osteoblasts and osteoclasts and that both cells express RAGE. HMGB1 is recoverable in the media of primary osteoblast cultures and cultures of isolated osteoclast precursors and osteoclasts. Parathyroid hormone (PTH), a regulator of bone remodeling, attenuates HMGB1 release in cultures of primary osteoblasts and MC3T3-E1 osteoblast-like cells but augments this release in the rat osteosarcoma cell line UMR 106-01, both responses primarily via activation of adenylyl cyclase. PTH-induced HMGB1 discharge by UMR cells exhibits similar release kinetics as reported for activated macrophages. These data confirm the presence of the HMGB1/RAGE signaling axis in bone.  相似文献   

5.
HMGB1 and cord blood: its role as immuno-adjuvant factor in innate immunity   总被引:1,自引:0,他引:1  
In newborn the innate immune system provides essential protection during primary infections before the generation of an appropriate adaptive immune response that is initially not fully operative. Innate immune response is evoked and perpetuated by molecules derived from microorganisms or by the damage/death of host cells. These are collectively known as damage-associated molecular-pattern (DAMP) molecules. High-mobility group box 1 protein (HMGB1) or amphoterin, which previously was considered to be only a nuclear factor, has been recently identified as a DAMP molecule. When it is actively secreted by inflammatory cells or passively released from necrotic cells, HMGB1 mediates the response to infection, injury and inflammation, inducing dendritic cells maturation and T helper-1-cell responses. To characterize the role of HMGB1 in the innate and immature defense mechanisms in newborns, human cord blood (CB) mononuclear cells, in comparison to adult peripheral blood (PB) mononuclear cells, have been analyzed for its expression. By flow cytometry and western blot analysis, we observed that in CB and PB cells: i) HMGB1 is expressed on cell surface membranes of myeloid dendritic cell precursors, mostly, and lymphocytes (gamma/delta and CD4(+) T cells) to a lesser extent; ii) different pro-inflammatory stimuli or molecules that mimic infection increased cell surface expression of HMGB1 as well as its secretion into extracellular environment; iii) the treatment with synthetic molecules such as aminobisphosphonates (ABs), identified to be γδ T cell antigens, triggered up-regulation of HMGB1 expression on mononuclear cells, as well γδ T lymphocytes, inducing its secretion. The modulation of its secretion and the HMGB1-mediated migration of monocytes indicated HMGB1 as regulator of immune response in an immature system, like CB, through engagement of γδ T lymphocytes and myeloid dendritic cell precursors, essential components of innate immunity. In addition, the increased HMGB1 expression/secretion triggered by ABs, previously characterized for their immuno-modulating and immune-adjuvant capabilities, indicated that immunomodulation might represent a new therapeutical approach for neonatal and adult pathologies.  相似文献   

6.
High mobility group box-1 protein (HMGB1) had been proved to induce maturation and activation of dendritic cell (DC), however, the endogenous changes and mechanisms underlying are unknown. Since endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular survival and repair, we hypothesized that HMGB1 may regulate the function of DC by modulating ERS. In our study, HMGB1 stimulation induced significant ERS responses in DCs in a time- and dose-dependent manner, demonstrated by the up-regulation of a number of ERS markers. Gene silence of XBP-1 in splenic DCs decreased the levels of CD80, CD86 as well as major histocompatibility complex (MHC)-II expression and cytokine secretion after HMGB1 treatment, when compared with untransfected or nontargeting-transfected DCs (all P<0.05). Moreover, XBP-1 silenced DCs after treatment with HMGB1 failed to stimulate notable proliferation and differentiation of T cells, unlike normal DCs or nontargeting-transfected DCs (all P<0.05). Gene silence of XBP-1 resulted in down-regulation of the receptor for advanced glycation end products (RAGE) expression on the surface of splenic DCs induced by HMGB1 stimulation (P<0.05). These findings demonstrate an important role for ERS and its regulator XBP-1 in HMGB1-induced maturation and activation of DCs.  相似文献   

7.
High-mobility group box 1 (HMGB1) is released extracellularly upon cell necrosis acting as a mediator in tissue injury and inflammation. However, the molecular mechanisms for the proinflammatory effect of HMGB1 are poorly understood. Here, we define a novel function of HMGB1 in promoting Mac-1-dependent neutrophil recruitment. HMGB1 administration induced rapid neutrophil recruitment in vivo. HMGB1-mediated recruitment was prevented in mice deficient in the beta2-integrin Mac-1 but not in those deficient in LFA-1. As observed by bone marrow chimera experiments, Mac-1-dependent neutrophil recruitment induced by HMGB1 required the presence of receptor for advanced glycation end products (RAGE) on neutrophils but not on endothelial cells. In vitro, HMGB1 enhanced the interaction between Mac-1 and RAGE. Consistently, HMGB1 activated Mac-1 as well as Mac-1-mediated adhesive and migratory functions of neutrophils in a RAGE-dependent manner. Moreover, HMGB1-induced activation of nuclear factor-kappaB in neutrophils required both Mac-1 and RAGE. Together, a novel HMGB1-dependent pathway for inflammatory cell recruitment and activation that requires the functional interplay between Mac-1 and RAGE is described here.  相似文献   

8.
Old age and Cx43 deletion in osteocytes are associated with increased osteocyte apoptosis and osteoclastogenesis. We previously demonstrated that apoptotic osteocytes release elevated concentrations of the proinflammatory cytokine, high mobility group box 1 protein (HMGB1) and apoptotic osteocyte conditioned media (CM) promotes osteoclast differentiation. Further, prevention of osteocyte apoptosis blocks osteoclast differentiation and attenuates the extracellular release of HMGB1 and RANKL. Moreover, sequestration of HMGB1, in turn, reduces RANKL production/release by MLO-Y4 osteocytic cells silenced for Cx43 (Cx43def), highlighting the possibility that HMGB1 promotes apoptotic osteocyte-induced osteoclastogenesis. However, the role of HMGB1 signaling in osteocytes has not been well studied. Further, the mechanisms underlying its release and the receptor(s) responsible for its actions is not clear. We now report that a neutralizing HMGB1 antibody reduces osteoclast formation in RANKL/M-CSF treated bone marrow cells. In bone marrow macrophages (BMMs), toll-like receptor 4 (TLR4) inhibition with LPS-RS, but not receptor for advanced glycation end products (RAGE) inhibition with Azeliragon attenuated osteoclast differentiation. Further, inhibition of RAGE but not of TLR4 in osteoclast precursors reduced osteoclast number, suggesting that HGMB1 produced by osteoclasts directly affects differentiation by activating TLR4 in BMMs and RAGE in preosteoclasts. Our findings also suggest that increased osteoclastogenesis induced by apoptotic osteocytes CM is not mediated through HMGB1/RAGE activation and that direct HMGB1 actions in osteocytes stimulate pro-osteoclastogenic signal release from Cx43def osteocytes. Based on these findings, we propose that HMGB1 exerts dual effects on osteoclasts, directly by inducing differentiation through TLR4 and RAGE activation and indirectly by increasing pro-osteoclastogenic cytokine secretion from osteocytes.  相似文献   

9.
The chromosomal high mobility group box-1 (HMGB1) protein acts as a proinflammatory cytokine when released in the extracellular environment by necrotic and inflammatory cells. In the present study, we show that HMGB1 exerts proangiogenic effects by inducing MAPK ERK1/2 activation, cell proliferation, and chemotaxis in endothelial cells of different origin. Accordingly, HMGB1 stimulates membrane ruffling and repair of a mechanically wounded endothelial cell monolayer and causes endothelial cell sprouting in a three-dimensional fibrin gel. In keeping with its in vitro properties, HMGB1 stimulates neovascularization when applied in vivo on the top of the chicken embryo chorioallantoic membrane whose blood vessels express the HMGB1 receptor for advanced glycation end products (RAGE). Accordingly, RAGE blockade by neutralizing Abs inhibits HMGB1-induced neovascularization in vivo and endothelial cell proliferation and membrane ruffling in vitro. Taken together, the data identify HMGB1/RAGE interaction as a potent proangiogenic stimulus.  相似文献   

10.
4-1BB costimulation promotes human T cell adhesion to fibronectin   总被引:6,自引:0,他引:6  
CD28 and 4-1BB (CD137) are costimulatory molecules for T cells. In this study we investigated the role of 4-1BB in T cell adhesion to fibronectin (FN). Unlike CD28, 4-1BB is present in only a small subset of T cells prepared from fresh human peripheral blood mononuclear cells, but was induced after prolonged TCR/CD28 activation in vitro. 4-1BB-expressing T cells were characteristically unique in their strong responsiveness to FN. Anti-4-1BB cross-linking synergized CD28 costimulation by lowering the threshold of CD3 signal required for CD28-mediated maximal proliferative response. In addition to increasing proliferative responses, 4-1BB promoted T cell adhesion to FN in the presence of CD28 costimulation. 4-1BB-mediated cell adhesion to FN was blocked by anti-beta1 integrin, suggesting that 4-1BB mediates beta1 integrin activation. The role of 4-1BB in inducing CD4(+) T cell adhesion to FN was confirmed by showing that the human leukemic CD4(+) T cell line, Jurkat, when transfected with cDNA encoding 4-1BB, became adherent to FN with anti-4-1BB stimulation. Taken together, our results suggest that 4-1BB-promoted T cell adhesion to extracellular matrix proteins is an important postactivation process for T cell migration.  相似文献   

11.
Receptor for advanced glycation end products (RAGE) is an activation receptor triggered by inflammatory S100/calgranulins and high mobility group box-1 ligands. We have investigated the importance of RAGE on Ag priming of T cells in murine models in vivo. RAGE is inducibly up-regulated during T cell activation. Transfer of RAGE-deficient OT II T cells into OVA-immunized hosts resulted in reduced proliferative responses that were further diminished in RAGE-deficient recipients. Examination of RAGE-deficient dendritic cells did not reveal functional impairment in Ag presentation, maturation, or migratory capacities. However, RAGE-deficient T cells showed markedly impaired proliferative responses in vitro to nominal and alloantigens, in parallel with decreased production of IFN-gamma and IL-2. These data indicate that RAGE expressed on T cells is required for efficient priming of T cells and elucidate critical roles for RAGE engagement during cognate dendritic cell-T cell interactions.  相似文献   

12.
The receptor for advanced glycation end products (RAGE) plays an important role in host defense against bacterial infection. In the present experiments, we investigated the mechanisms by which RAGE contributes to the ability of neutrophils to eradicate bacteria. Wild-type (RAGE(+/+)) neutrophils demonstrated significantly greater ability to kill Escherichia coli compared with RAGE(-/-) neutrophils. After intraperitoneal injection of E. coli, increased numbers of bacteria were found in the peritoneal fluid from RAGE(-/-) as compared with RAGE(+/+) mice. Exposure of neutrophils to the protypical RAGE ligand AGE resulted in activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and enhanced killing of E. coli, and intraperitoneal injection of AGE enhanced bacterial clearance during peritonitis. However, incubation of neutrophils with high mobility group box 1 protein (HMGB1), which also binds to RAGE, diminished E. coli-induced activation of NADPH oxidase in neutrophils and bacterial killing both in vitro and in vivo. Deletion of the COOH-terminal tail of HMGB1, a region necessary for binding to RAGE, abrogated the ability of HMGB1 to inhibit bacterial killing. Incubation of neutrophils with HMGB1 diminished bacterial or AGE-dependent activation of NADPH oxidase. The increase in phosphorylation of the p40(phox) subunit of NADPH oxidase that occurred after culture of neutrophils with E. coli was inhibited by exposure of the cells to HMGB1. These results showing that HMGB1, through RAGE-dependent mechanisms, diminishes bacterial killing by neutrophils as well as NADPH oxidase activation provide a novel mechanism by which HMGB1 can potentiate sepsis-associated organ dysfunction and mortality.  相似文献   

13.
14.
15.
16.
RAGE and RAGE ligands in cancer   总被引:3,自引:0,他引:3  
The receptor for advanced glycation end-products (RAGE) is a multifunctional receptor with multiple ligands that is known to play a key role in several diseases, including diabetes, arthritis, and Alzheimer's disease. Recent evidence indicates that this receptor also has an important role in cancer. RAGE ligands, which include the S100/calgranulins and high-mobility group box 1 (HMGB1) ligands, are expressed and secreted by cancer cells and are associated with increased metastasis and poorer outcomes in a wide variety of tumors. These ligands can interact in an autocrine manner to directly activate cancer cells and stimulate proliferation, invasion, chemoresistance, and metastasis. RAGE ligands derived from cancer cells can also influence a variety of important cell types within the tumor microenvironment, including fibroblasts, leukocytes, and vascular cells, leading to increased fibrosis, inflammation, and angiogenesis. Several of the cells in the tumor microenvironment also produce RAGE ligands. Most of the cancer-promoting effects of RAGE ligands are the result of their interaction with RAGE. However, these ligands also often have separate intracellular roles, and some may interact with other extracellular targets, so it is not currently possible to assign all of their effects to RAGE activation. Despite these complications, the bulk of the evidence supports the premise that the ligand-RAGE axis is an important target for therapeutic intervention in cancer.  相似文献   

17.
Leprosy enables investigation of mechanisms by which the innate immune system contributes to host defense against infection, because in one form, the disease progresses, and in the other, the infection is limited. We report that Toll-like receptor (TLR) activation of human monocytes induces rapid differentiation into two distinct subsets: DC-SIGN+ CD16+ macrophages and CD1b+ DC-SIGN- dendritic cells. DC-SIGN+ phagocytic macrophages were expanded by TLR-mediated upregulation of interleukin (IL)-15 and IL-15 receptor. CD1b+ dendritic cells were expanded by TLR-mediated upregulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor, promoted T cell activation and secreted proinflammatory cytokines. Whereas DC-SIGN+ macrophages were detected in lesions and after TLR activation in all leprosy patients, CD1b+ dendritic cells were not detected in lesions or after TLR activation of peripheral monocytes in individuals with the progressive lepromatous form, except during reversal reactions in which bacilli were cleared by T helper type 1 (TH1) responses. In tuberculoid lepromatous lesions, DC-SIGN+ cells were positive for macrophage markers, but negative for dendritic cell markers. Thus, TLR-induced differentiation of monocytes into either macrophages or dendritic cells seems to crucially influence effective host defenses in human infectious disease.  相似文献   

18.
An increase in the interaction between advanced glycation end-products (AGEs) and their receptor RAGE is believed to contribute to the pathogenesis of chronic complications of Diabetes mellitus, which can include bone alterations such as osteopenia. We have recently found that extracellular AGEs can directly regulate the growth and development of rat osteosarcoma UMR106 cells, and of mouse calvaria-derived MC3T3E1 osteoblasts throughout their successive developmental stages (proliferation, differentiation and mineralisation), possibly by the recognition of AGEs moieties by specific osteoblastic receptors which are present in both cell lines. In the present study we examined the possible expression of RAGE by UMR106 and MC3T3E1 osteoblastic cells, by immunoblot analysis. We also investigated whether short-, medium- or long-term exposure of osteoblasts to extracellular AGEs, could modify their affinity constant and maximal binding for AGEs (by 125I-AGE-BSA binding experiments), their expression of RAGE (by immunoblot analysis) and the activation status of the osteoblastic ERK 1/2 signal transduction mechanism (by immunoblot analysis for ERK and P-ERK). Our results show that both osteoblastic cell lines express readily detectable levels of RAGE. Short-term exposure of phenotypically mature osteoblastic UMR106 cells to AGEs decrease the cellular density of AGE-binding sites while increasing the affinity of these sites for AGEs. This culture condition also dose-dependently increased the expression of RAGE and the activation of ERK. In proliferating MC3T3E1 pre-osteoblasts, 24–72 h exposure to AGEs did not modify expression of RAGE, ERK activation or the cellular density of AGE-binding sites. However, it did change the affinity of these binding sites for AGEs, with both higher- and lower-affinity sites now being apparent. Medium-term (1 week) incubation of differentiated MC3T3E1 osteoblasts with AGEs, induced a simultaneous increase in RAGE expression and in the relative amount of P-ERK. Mineralising MC3T3E1 cultures grown for 3 weeks in the presence of extracellular AGEs showed a decrease both in RAGE and P-ERK expression. These results indicate that, in phenotypically mature osteoblastic cells, changes in ERK activation closely follow the AGEs-induced regulation of RAGE expression. Thus, the AGEs-induced biological effects that we have observed previously in osteoblasts, could be mediated by RAGE in the later stages of development, and mediated by other AGE receptors in the earlier pre-osteoblastic stage.  相似文献   

19.
High mobility group box 1 (HMGB1) is an abundant chromatin protein that acts as a cytokine when released in the extracellular milieu by necrotic and inflammatory cells. Here, we show that extracellular HMGB1 and its receptor for advanced glycation end products (RAGE) induce both migration and proliferation of vessel-associated stem cells (mesoangioblasts), and thus may play a role in muscle tissue regeneration. In vitro, HMGB1 induces migration and proliferation of both adult and embryonic mesoangioblasts, and disrupts the barrier function of endothelial monolayers. In living mice, mesoangioblasts injected into the femoral artery migrate close to HMGB1-loaded heparin-Sepharose beads implanted in healthy muscle, but are unresponsive to control beads. Interestingly, alpha-sarcoglycan null dystrophic muscle contains elevated levels of HMGB1; however, mesoangioblasts migrate into dystrophic muscle even if their RAGE receptor is disabled. This implies that the HMGB1-RAGE interaction is sufficient, but not necessary, for mesoangioblast homing; a different pathway might coexist. Although the role of endogenous HMGB1 in the reconstruction of dystrophic muscle remains to be clarified, injected HMGB1 may be used to promote tissue regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号